Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Boonen
1
82 kgKristoff
2
78 kgRojas
3
70 kgGuardini
4
66 kgSagan
5
78 kgVan Avermaet
6
74 kgHaussler
7
74 kgDémare
8
76 kgStuyven
9
78 kgBennett
10
73 kgArndt
11
77.5 kgBurghardt
12
75 kgBlythe
13
68 kgSalomein
14
80 kgTerpstra
15
75 kgMaes
16
78 kgHayman
17
78 kgStannard
18
83 kgBouhanni
19
65 kgMørkøv
20
71 kgFerrari
21
73 kg
1
82 kgKristoff
2
78 kgRojas
3
70 kgGuardini
4
66 kgSagan
5
78 kgVan Avermaet
6
74 kgHaussler
7
74 kgDémare
8
76 kgStuyven
9
78 kgBennett
10
73 kgArndt
11
77.5 kgBurghardt
12
75 kgBlythe
13
68 kgSalomein
14
80 kgTerpstra
15
75 kgMaes
16
78 kgHayman
17
78 kgStannard
18
83 kgBouhanni
19
65 kgMørkøv
20
71 kgFerrari
21
73 kg
Weight (KG) →
Result →
83
65
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | KRISTOFF Alexander | 78 |
3 | ROJAS José Joaquín | 70 |
4 | GUARDINI Andrea | 66 |
5 | SAGAN Peter | 78 |
6 | VAN AVERMAET Greg | 74 |
7 | HAUSSLER Heinrich | 74 |
8 | DÉMARE Arnaud | 76 |
9 | STUYVEN Jasper | 78 |
10 | BENNETT Sam | 73 |
11 | ARNDT Nikias | 77.5 |
12 | BURGHARDT Marcus | 75 |
13 | BLYTHE Adam | 68 |
14 | SALOMEIN Jarl | 80 |
15 | TERPSTRA Niki | 75 |
16 | MAES Nikolas | 78 |
17 | HAYMAN Mathew | 78 |
18 | STANNARD Ian | 83 |
19 | BOUHANNI Nacer | 65 |
20 | MØRKØV Michael | 71 |
21 | FERRARI Roberto | 73 |