Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Cavendish
1
70 kgKristoff
2
78 kgModolo
3
67 kgBoasson Hagen
4
75 kgVan Avermaet
5
74 kgGuardini
6
66 kgJans
7
68 kgBennett
8
73 kgPalini
9
67 kgKuznetsov
10
70 kgVan Hecke
11
69 kgQuinziato
12
74 kgLooij
13
75 kgGérard
14
70 kgSmukulis
15
72 kgKiendyś
16
78 kgKragh Andersen
17
73 kg
1
70 kgKristoff
2
78 kgModolo
3
67 kgBoasson Hagen
4
75 kgVan Avermaet
5
74 kgGuardini
6
66 kgJans
7
68 kgBennett
8
73 kgPalini
9
67 kgKuznetsov
10
70 kgVan Hecke
11
69 kgQuinziato
12
74 kgLooij
13
75 kgGérard
14
70 kgSmukulis
15
72 kgKiendyś
16
78 kgKragh Andersen
17
73 kg
Weight (KG) →
Result →
78
66
1
17
# | Rider | Weight (KG) |
---|---|---|
1 | CAVENDISH Mark | 70 |
2 | KRISTOFF Alexander | 78 |
3 | MODOLO Sacha | 67 |
4 | BOASSON HAGEN Edvald | 75 |
5 | VAN AVERMAET Greg | 74 |
6 | GUARDINI Andrea | 66 |
7 | JANS Roy | 68 |
8 | BENNETT Sam | 73 |
9 | PALINI Andrea | 67 |
10 | KUZNETSOV Viacheslav | 70 |
11 | VAN HECKE Preben | 69 |
12 | QUINZIATO Manuel | 74 |
13 | LOOIJ André | 75 |
14 | GÉRARD Arnaud | 70 |
15 | SMUKULIS Gatis | 72 |
16 | KIENDYŚ Tomasz | 78 |
17 | KRAGH ANDERSEN Søren | 73 |