Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Cavanagh
2
72 kgCahyadi
3
52 kgCuley
5
69 kgQuintero
8
63 kgOvechkin
13
61 kgQuick
14
77 kgOram
15
68 kgNieto
16
58 kgJurado
17
68 kgSainbayar
20
60 kgOrmiston
35
67 kgMuzychkin
36
76 kgManulang
37
59 kgMazuki
38
57 kgMisbah
39
56 kgChoi
49
53 kgSetiawan
68
61 kgIderbold
72
58 kgJones
79
82 kgMat Amin
82
54 kgEyob
83
61 kgGoh
86
54 kgĐurić
87
79 kg
2
72 kgCahyadi
3
52 kgCuley
5
69 kgQuintero
8
63 kgOvechkin
13
61 kgQuick
14
77 kgOram
15
68 kgNieto
16
58 kgJurado
17
68 kgSainbayar
20
60 kgOrmiston
35
67 kgMuzychkin
36
76 kgManulang
37
59 kgMazuki
38
57 kgMisbah
39
56 kgChoi
49
53 kgSetiawan
68
61 kgIderbold
72
58 kgJones
79
82 kgMat Amin
82
54 kgEyob
83
61 kgGoh
86
54 kgĐurić
87
79 kg
Weight (KG) →
Result →
82
52
2
87
# | Rider | Weight (KG) |
---|---|---|
2 | CAVANAGH Ryan | 72 |
3 | CAHYADI Aiman | 52 |
5 | CULEY Marcus | 69 |
8 | QUINTERO Carlos | 63 |
13 | OVECHKIN Artem | 61 |
14 | QUICK Blake | 77 |
15 | ORAM James | 68 |
16 | NIETO Edgar | 58 |
17 | JURADO Christofer Robín | 68 |
20 | SAINBAYAR Jambaljamts | 60 |
35 | ORMISTON Callum | 67 |
36 | MUZYCHKIN Anton | 76 |
37 | MANULANG Robin | 59 |
38 | MAZUKI Nur Amirul Fakhruddin | 57 |
39 | MISBAH Muhsin Al Redha | 56 |
49 | CHOI Hiu Fung | 53 |
68 | SETIAWAN Andreas Odie Purnama | 61 |
72 | IDERBOLD Bold | 58 |
79 | JONES Taj | 82 |
82 | MAT AMIN Mohd Shahrul | 54 |
83 | EYOB Metkel | 61 |
86 | GOH Choon Huat | 54 |
87 | ĐURIĆ Đorđe | 79 |