Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Cavanagh
2
72 kgCahyadi
3
52 kgCuley
4
69 kgJurado
6
68 kgQuick
12
77 kgQuintero
13
63 kgOram
15
68 kgOvechkin
16
61 kgNieto
17
58 kgSainbayar
20
60 kgMazuki
29
57 kgOrmiston
33
67 kgMuzychkin
35
76 kgMisbah
36
56 kgManulang
38
59 kgChoi
41
53 kgSetiawan
64
61 kgMat Amin
67
54 kgJones
71
82 kgIderbold
72
58 kgĐurić
73
79 kgEyob
77
61 kgGoh
84
54 kg
2
72 kgCahyadi
3
52 kgCuley
4
69 kgJurado
6
68 kgQuick
12
77 kgQuintero
13
63 kgOram
15
68 kgOvechkin
16
61 kgNieto
17
58 kgSainbayar
20
60 kgMazuki
29
57 kgOrmiston
33
67 kgMuzychkin
35
76 kgMisbah
36
56 kgManulang
38
59 kgChoi
41
53 kgSetiawan
64
61 kgMat Amin
67
54 kgJones
71
82 kgIderbold
72
58 kgĐurić
73
79 kgEyob
77
61 kgGoh
84
54 kg
Weight (KG) →
Result →
82
52
2
84
# | Rider | Weight (KG) |
---|---|---|
2 | CAVANAGH Ryan | 72 |
3 | CAHYADI Aiman | 52 |
4 | CULEY Marcus | 69 |
6 | JURADO Christofer Robín | 68 |
12 | QUICK Blake | 77 |
13 | QUINTERO Carlos | 63 |
15 | ORAM James | 68 |
16 | OVECHKIN Artem | 61 |
17 | NIETO Edgar | 58 |
20 | SAINBAYAR Jambaljamts | 60 |
29 | MAZUKI Nur Amirul Fakhruddin | 57 |
33 | ORMISTON Callum | 67 |
35 | MUZYCHKIN Anton | 76 |
36 | MISBAH Muhsin Al Redha | 56 |
38 | MANULANG Robin | 59 |
41 | CHOI Hiu Fung | 53 |
64 | SETIAWAN Andreas Odie Purnama | 61 |
67 | MAT AMIN Mohd Shahrul | 54 |
71 | JONES Taj | 82 |
72 | IDERBOLD Bold | 58 |
73 | ĐURIĆ Đorđe | 79 |
77 | EYOB Metkel | 61 |
84 | GOH Choon Huat | 54 |