Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 103
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Mat Amin
3
54 kgJones
7
82 kgĐurić
10
79 kgMazuki
11
57 kgQuick
13
77 kgIderbold
22
58 kgChoi
24
53 kgEyob
32
61 kgJurado
34
68 kgQuintero
37
63 kgOrmiston
40
67 kgCuley
41
69 kgMisbah
46
56 kgMuzychkin
47
76 kgCavanagh
50
72 kgOram
51
68 kgOvechkin
58
61 kgNieto
59
58 kgCahyadi
66
52 kgGoh
73
54 kgManulang
74
59 kgSetiawan
79
61 kgSainbayar
88
60 kg
3
54 kgJones
7
82 kgĐurić
10
79 kgMazuki
11
57 kgQuick
13
77 kgIderbold
22
58 kgChoi
24
53 kgEyob
32
61 kgJurado
34
68 kgQuintero
37
63 kgOrmiston
40
67 kgCuley
41
69 kgMisbah
46
56 kgMuzychkin
47
76 kgCavanagh
50
72 kgOram
51
68 kgOvechkin
58
61 kgNieto
59
58 kgCahyadi
66
52 kgGoh
73
54 kgManulang
74
59 kgSetiawan
79
61 kgSainbayar
88
60 kg
Weight (KG) →
Result →
82
52
3
88
# | Rider | Weight (KG) |
---|---|---|
3 | MAT AMIN Mohd Shahrul | 54 |
7 | JONES Taj | 82 |
10 | ĐURIĆ Đorđe | 79 |
11 | MAZUKI Nur Amirul Fakhruddin | 57 |
13 | QUICK Blake | 77 |
22 | IDERBOLD Bold | 58 |
24 | CHOI Hiu Fung | 53 |
32 | EYOB Metkel | 61 |
34 | JURADO Christofer Robín | 68 |
37 | QUINTERO Carlos | 63 |
40 | ORMISTON Callum | 67 |
41 | CULEY Marcus | 69 |
46 | MISBAH Muhsin Al Redha | 56 |
47 | MUZYCHKIN Anton | 76 |
50 | CAVANAGH Ryan | 72 |
51 | ORAM James | 68 |
58 | OVECHKIN Artem | 61 |
59 | NIETO Edgar | 58 |
66 | CAHYADI Aiman | 52 |
73 | GOH Choon Huat | 54 |
74 | MANULANG Robin | 59 |
79 | SETIAWAN Andreas Odie Purnama | 61 |
88 | SAINBAYAR Jambaljamts | 60 |