Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 32
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Cavanagh
2
72 kgEyob
3
61 kgChoi
7
53 kgQuintero
8
63 kgOram
9
68 kgCahyadi
10
52 kgJurado
13
68 kgSetiawan
14
61 kgNieto
16
58 kgOvechkin
17
61 kgCuley
19
69 kgOrmiston
24
66 kgMazuki
25
57 kgManulang
26
59 kgQuick
27
77 kgSainbayar
32
60 kgMisbah
33
56 kgMat Amin
46
54 kgIderbold
51
58 kgĐurić
70
78 kgJones
73
82 kgGoh
74
54 kgMuzychkin
89
76 kg
2
72 kgEyob
3
61 kgChoi
7
53 kgQuintero
8
63 kgOram
9
68 kgCahyadi
10
52 kgJurado
13
68 kgSetiawan
14
61 kgNieto
16
58 kgOvechkin
17
61 kgCuley
19
69 kgOrmiston
24
66 kgMazuki
25
57 kgManulang
26
59 kgQuick
27
77 kgSainbayar
32
60 kgMisbah
33
56 kgMat Amin
46
54 kgIderbold
51
58 kgĐurić
70
78 kgJones
73
82 kgGoh
74
54 kgMuzychkin
89
76 kg
Weight (KG) →
Result →
82
52
2
89
# | Rider | Weight (KG) |
---|---|---|
2 | CAVANAGH Ryan | 72 |
3 | EYOB Metkel | 61 |
7 | CHOI Hiu Fung | 53 |
8 | QUINTERO Carlos | 63 |
9 | ORAM James | 68 |
10 | CAHYADI Aiman | 52 |
13 | JURADO Christofer Robín | 68 |
14 | SETIAWAN Andreas Odie Purnama | 61 |
16 | NIETO Edgar | 58 |
17 | OVECHKIN Artem | 61 |
19 | CULEY Marcus | 69 |
24 | ORMISTON Callum | 66 |
25 | MAZUKI Nur Amirul Fakhruddin | 57 |
26 | MANULANG Robin | 59 |
27 | QUICK Blake | 77 |
32 | SAINBAYAR Jambaljamts | 60 |
33 | MISBAH Muhsin Al Redha | 56 |
46 | MAT AMIN Mohd Shahrul | 54 |
51 | IDERBOLD Bold | 58 |
70 | ĐURIĆ Đorđe | 78 |
73 | JONES Taj | 82 |
74 | GOH Choon Huat | 54 |
89 | MUZYCHKIN Anton | 76 |