Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Ljungqvist
2
73 kgArvesen
4
74 kgPoitschke
7
73 kgLöwik
12
72 kgRogina
14
70 kgLupeikis
21
80 kgSchulze
22
70 kgBäckstedt
24
94 kgTamouridis
28
70 kgHammond
31
71 kgFerrari
33
74 kgKotoulas
34
70 kgRoesems
35
81 kgRogers
40
74 kgCancellara
44
80 kgDavis
46
73 kgSandstød
47
74 kgJohansen
49
78 kgvan Dooren
50
59 kg
2
73 kgArvesen
4
74 kgPoitschke
7
73 kgLöwik
12
72 kgRogina
14
70 kgLupeikis
21
80 kgSchulze
22
70 kgBäckstedt
24
94 kgTamouridis
28
70 kgHammond
31
71 kgFerrari
33
74 kgKotoulas
34
70 kgRoesems
35
81 kgRogers
40
74 kgCancellara
44
80 kgDavis
46
73 kgSandstød
47
74 kgJohansen
49
78 kgvan Dooren
50
59 kg
Weight (KG) →
Result →
94
59
2
50
# | Rider | Weight (KG) |
---|---|---|
2 | LJUNGQVIST Marcus | 73 |
4 | ARVESEN Kurt-Asle | 74 |
7 | POITSCHKE Enrico | 73 |
12 | LÖWIK Gerben | 72 |
14 | ROGINA Radoslav | 70 |
21 | LUPEIKIS Remigius | 80 |
22 | SCHULZE André | 70 |
24 | BÄCKSTEDT Magnus | 94 |
28 | TAMOURIDIS Ioannis | 70 |
31 | HAMMOND Roger | 71 |
33 | FERRARI Diego | 74 |
34 | KOTOULAS Manolis | 70 |
35 | ROESEMS Bert | 81 |
40 | ROGERS Michael | 74 |
44 | CANCELLARA Fabian | 80 |
46 | DAVIS Allan | 73 |
47 | SANDSTØD Michael | 74 |
49 | JOHANSEN Allan | 78 |
50 | VAN DOOREN Bas | 59 |