Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Arvesen
2
74 kgGlasner
3
72 kgCancellara
5
80 kgPiątek
7
71 kgCalcagni
9
65 kgChmielewski
11
72 kgGianetti
12
62 kgvan Dooren
13
59 kgJohansen
14
78 kgMahorič
15
68 kgLjungqvist
18
73 kgCox
21
62 kgRogers
22
74 kgBäckstedt
25
94 kgReiss
27
73 kgBonča
28
63 kgSinkewitz
29
63 kgRogina
30
70 kgZucconi
40
63 kgStreel
43
69 kgFerrari
45
74 kgSandstød
48
74 kg
2
74 kgGlasner
3
72 kgCancellara
5
80 kgPiątek
7
71 kgCalcagni
9
65 kgChmielewski
11
72 kgGianetti
12
62 kgvan Dooren
13
59 kgJohansen
14
78 kgMahorič
15
68 kgLjungqvist
18
73 kgCox
21
62 kgRogers
22
74 kgBäckstedt
25
94 kgReiss
27
73 kgBonča
28
63 kgSinkewitz
29
63 kgRogina
30
70 kgZucconi
40
63 kgStreel
43
69 kgFerrari
45
74 kgSandstød
48
74 kg
Weight (KG) →
Result →
94
59
2
48
# | Rider | Weight (KG) |
---|---|---|
2 | ARVESEN Kurt-Asle | 74 |
3 | GLASNER Björn | 72 |
5 | CANCELLARA Fabian | 80 |
7 | PIĄTEK Zbigniew | 71 |
9 | CALCAGNI Patrick | 65 |
11 | CHMIELEWSKI Piotr | 72 |
12 | GIANETTI Mauro | 62 |
13 | VAN DOOREN Bas | 59 |
14 | JOHANSEN Allan | 78 |
15 | MAHORIČ Mitja | 68 |
18 | LJUNGQVIST Marcus | 73 |
21 | COX Ryan | 62 |
22 | ROGERS Michael | 74 |
25 | BÄCKSTEDT Magnus | 94 |
27 | REISS Andris | 73 |
28 | BONČA Valter | 63 |
29 | SINKEWITZ Patrik | 63 |
30 | ROGINA Radoslav | 70 |
40 | ZUCCONI Pietro | 63 |
43 | STREEL Marc | 69 |
45 | FERRARI Diego | 74 |
48 | SANDSTØD Michael | 74 |