Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 52
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Wærenskjold
1
92 kgUrianstad Bugge
4
61 kgMünstermann
5
75 kgKulset
6
68 kgHollyman
7
59 kgHuys
8
77 kgKimber
9
70 kgHeiduk
16
70 kgBárta
17
79 kgEide
18
68 kgTyrpekl
19
67 kgJohnston
21
55 kgClauss
25
71 kgRønning
28
74 kgŘeha
29
72 kgIrvine
33
75 kgMunday
35
57 kgAgrotis
36
67 kgHník
38
56 kgSteigner
40
62 kgRudderham
42
73 kgKubiš
46
70 kgChren
49
72 kg
1
92 kgUrianstad Bugge
4
61 kgMünstermann
5
75 kgKulset
6
68 kgHollyman
7
59 kgHuys
8
77 kgKimber
9
70 kgHeiduk
16
70 kgBárta
17
79 kgEide
18
68 kgTyrpekl
19
67 kgJohnston
21
55 kgClauss
25
71 kgRønning
28
74 kgŘeha
29
72 kgIrvine
33
75 kgMunday
35
57 kgAgrotis
36
67 kgHník
38
56 kgSteigner
40
62 kgRudderham
42
73 kgKubiš
46
70 kgChren
49
72 kg
Weight (KG) →
Result →
92
55
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | WÆRENSKJOLD Søren | 92 |
4 | URIANSTAD BUGGE Martin | 61 |
5 | MÜNSTERMANN Per | 75 |
6 | KULSET Sindre | 68 |
7 | HOLLYMAN Mason | 59 |
8 | HUYS Branko | 77 |
9 | KIMBER George | 70 |
16 | HEIDUK Kim | 70 |
17 | BÁRTA Tomáš | 79 |
18 | EIDE Mikkel | 68 |
19 | TYRPEKL Karel | 67 |
21 | JOHNSTON Calum | 55 |
25 | CLAUSS Marc | 71 |
28 | RØNNING Vebjørn | 74 |
29 | ŘEHA Filip | 72 |
33 | IRVINE Declan | 75 |
35 | MUNDAY Samuel | 57 |
36 | AGROTIS Alexandros | 67 |
38 | HNÍK Jakub | 56 |
40 | STEIGNER Kilian | 62 |
42 | RUDDERHAM Ryan | 73 |
46 | KUBIŠ Lukáš | 70 |
49 | CHREN Martin | 72 |