Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 29
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Craven
1
75 kgBerhane
2
66 kgNiyonshuti
3
63 kgJelloul
4
58 kgTeklehaimanot
5
70 kgJanse van Rensburg
6
74 kgGrmay
8
63 kgJanse van Rensburg
18
63 kgMegías
30
63 kgChaoufi
32
65 kgVerschoor
41
74.5 kgVerbist
42
73 kgCalleeuw
44
71 kgLahsaini
47
77 kgSoula
48
68 kgGermain
56
60 kgCalabria
61
55 kgGreen
68
70 kgBelgasem
73
68 kg
1
75 kgBerhane
2
66 kgNiyonshuti
3
63 kgJelloul
4
58 kgTeklehaimanot
5
70 kgJanse van Rensburg
6
74 kgGrmay
8
63 kgJanse van Rensburg
18
63 kgMegías
30
63 kgChaoufi
32
65 kgVerschoor
41
74.5 kgVerbist
42
73 kgCalleeuw
44
71 kgLahsaini
47
77 kgSoula
48
68 kgGermain
56
60 kgCalabria
61
55 kgGreen
68
70 kgBelgasem
73
68 kg
Weight (KG) →
Result →
77
55
1
73
# | Rider | Weight (KG) |
---|---|---|
1 | CRAVEN Dan | 75 |
2 | BERHANE Natnael | 66 |
3 | NIYONSHUTI Adrien | 63 |
4 | JELLOUL Adil | 58 |
5 | TEKLEHAIMANOT Daniel | 70 |
6 | JANSE VAN RENSBURG Reinardt | 74 |
8 | GRMAY Tsgabu | 63 |
18 | JANSE VAN RENSBURG Jacques | 63 |
30 | MEGÍAS Javier | 63 |
32 | CHAOUFI Tarik | 65 |
41 | VERSCHOOR Martijn | 74.5 |
42 | VERBIST Evert | 73 |
44 | CALLEEUW Joeri | 71 |
47 | LAHSAINI Mouhssine | 77 |
48 | SOULA Guillaume | 68 |
56 | GERMAIN Chris | 60 |
61 | CALABRIA Fabio | 55 |
68 | GREEN Siméon | 70 |
73 | BELGASEM Ahmed Youssef | 68 |