Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 68
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Eyob
2
61 kgOkubamariam
3
60 kgAreruya
4
74 kgGhebreigzabhier
5
68 kgKangangi
10
64 kgAfewerki
14
63 kgLagab
22
63 kgMugisha
25
62 kgBosch
29
76 kgGoldstein
36
61 kgAmanuel
40
63 kgBoivin
41
78 kgHudry
49
57 kgGoldstein
50
63 kgPavlič
51
65 kgHadari
52
58 kgBonthuys
53
60 kg
2
61 kgOkubamariam
3
60 kgAreruya
4
74 kgGhebreigzabhier
5
68 kgKangangi
10
64 kgAfewerki
14
63 kgLagab
22
63 kgMugisha
25
62 kgBosch
29
76 kgGoldstein
36
61 kgAmanuel
40
63 kgBoivin
41
78 kgHudry
49
57 kgGoldstein
50
63 kgPavlič
51
65 kgHadari
52
58 kgBonthuys
53
60 kg
Weight (KG) →
Result →
78
57
2
53
# | Rider | Weight (KG) |
---|---|---|
2 | EYOB Metkel | 61 |
3 | OKUBAMARIAM Tesfom | 60 |
4 | ARERUYA Joseph | 74 |
5 | GHEBREIGZABHIER Amanuel | 68 |
10 | KANGANGI Suleiman | 64 |
14 | AFEWERKI Elyas | 63 |
22 | LAGAB Azzedine | 63 |
25 | MUGISHA Samuel | 62 |
29 | BOSCH Manuel | 76 |
36 | GOLDSTEIN Omer | 61 |
40 | AMANUEL Meron | 63 |
41 | BOIVIN Guillaume | 78 |
49 | HUDRY Florian | 57 |
50 | GOLDSTEIN Roy | 63 |
51 | PAVLIČ Marko | 65 |
52 | HADARI Zohar | 58 |
53 | BONTHUYS Carl | 60 |