Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 98
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Eyob
2
61 kgOkubamariam
3
60 kgGhebreigzabhier
10
68 kgAreruya
11
74 kgBosch
12
76 kgKangangi
13
64 kgAfewerki
18
63 kgBonthuys
29
60 kgLagab
32
63 kgBoivin
34
78 kgMugisha
36
62 kgAmanuel
44
63 kgGoldstein
50
63 kgGoldstein
51
61 kgHadari
52
58 kgPavlič
53
65 kgHudry
57
57 kg
2
61 kgOkubamariam
3
60 kgGhebreigzabhier
10
68 kgAreruya
11
74 kgBosch
12
76 kgKangangi
13
64 kgAfewerki
18
63 kgBonthuys
29
60 kgLagab
32
63 kgBoivin
34
78 kgMugisha
36
62 kgAmanuel
44
63 kgGoldstein
50
63 kgGoldstein
51
61 kgHadari
52
58 kgPavlič
53
65 kgHudry
57
57 kg
Weight (KG) →
Result →
78
57
2
57
# | Rider | Weight (KG) |
---|---|---|
2 | EYOB Metkel | 61 |
3 | OKUBAMARIAM Tesfom | 60 |
10 | GHEBREIGZABHIER Amanuel | 68 |
11 | ARERUYA Joseph | 74 |
12 | BOSCH Manuel | 76 |
13 | KANGANGI Suleiman | 64 |
18 | AFEWERKI Elyas | 63 |
29 | BONTHUYS Carl | 60 |
32 | LAGAB Azzedine | 63 |
34 | BOIVIN Guillaume | 78 |
36 | MUGISHA Samuel | 62 |
44 | AMANUEL Meron | 63 |
50 | GOLDSTEIN Roy | 63 |
51 | GOLDSTEIN Omer | 61 |
52 | HADARI Zohar | 58 |
53 | PAVLIČ Marko | 65 |
57 | HUDRY Florian | 57 |