Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
de Bod
3
66 kgAreruya
4
74 kgKangangi
5
64 kgMugisha
8
62 kgCully
11
73 kgÁvila
13
61 kgOkubamariam
14
60 kgRougier-Lagane
17
69 kgHoller
19
58 kgPellaud
22
70 kgKipkemboi
27
63 kgLagab
29
63 kgMayer
31
64 kgvan Engelen
32
51 kgBellan
38
61 kgMansouri
40
66 kgEyob
44
61 kgMusie
48
59 kgLincoln
50
75 kgVermeulen
59
67 kg
3
66 kgAreruya
4
74 kgKangangi
5
64 kgMugisha
8
62 kgCully
11
73 kgÁvila
13
61 kgOkubamariam
14
60 kgRougier-Lagane
17
69 kgHoller
19
58 kgPellaud
22
70 kgKipkemboi
27
63 kgLagab
29
63 kgMayer
31
64 kgvan Engelen
32
51 kgBellan
38
61 kgMansouri
40
66 kgEyob
44
61 kgMusie
48
59 kgLincoln
50
75 kgVermeulen
59
67 kg
Weight (KG) →
Result →
75
51
3
59
# | Rider | Weight (KG) |
---|---|---|
3 | DE BOD Stefan | 66 |
4 | ARERUYA Joseph | 74 |
5 | KANGANGI Suleiman | 64 |
8 | MUGISHA Samuel | 62 |
11 | CULLY Ján Andrej | 73 |
13 | ÁVILA Edwin | 61 |
14 | OKUBAMARIAM Tesfom | 60 |
17 | ROUGIER-LAGANE Christopher | 69 |
19 | HOLLER Nikodemus | 58 |
22 | PELLAUD Simon | 70 |
27 | KIPKEMBOI Salim | 63 |
29 | LAGAB Azzedine | 63 |
31 | MAYER Alexandre | 64 |
32 | VAN ENGELEN Adne | 51 |
38 | BELLAN Juraj | 61 |
40 | MANSOURI Abderrahmane | 66 |
44 | EYOB Metkel | 61 |
48 | MUSIE Saymon | 59 |
50 | LINCOLN Yannick | 75 |
59 | VERMEULEN Moran | 67 |