Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Areruya
1
74 kgEyob
4
61 kgKangangi
6
64 kgOkubamariam
7
60 kgPellaud
8
70 kgKipkemboi
9
63 kgMugisha
14
62 kgMusie
15
59 kgLagab
20
63 kgRougier-Lagane
22
69 kgHoller
25
58 kgde Bod
28
66 kgvan Engelen
35
51 kgLincoln
52
75 kgMansouri
53
66 kgMayer
54
64 kgVermeulen
58
67 kgBellan
64
61 kgCully
65
73 kgÁvila
67
61 kg
1
74 kgEyob
4
61 kgKangangi
6
64 kgOkubamariam
7
60 kgPellaud
8
70 kgKipkemboi
9
63 kgMugisha
14
62 kgMusie
15
59 kgLagab
20
63 kgRougier-Lagane
22
69 kgHoller
25
58 kgde Bod
28
66 kgvan Engelen
35
51 kgLincoln
52
75 kgMansouri
53
66 kgMayer
54
64 kgVermeulen
58
67 kgBellan
64
61 kgCully
65
73 kgÁvila
67
61 kg
Weight (KG) →
Result →
75
51
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | ARERUYA Joseph | 74 |
4 | EYOB Metkel | 61 |
6 | KANGANGI Suleiman | 64 |
7 | OKUBAMARIAM Tesfom | 60 |
8 | PELLAUD Simon | 70 |
9 | KIPKEMBOI Salim | 63 |
14 | MUGISHA Samuel | 62 |
15 | MUSIE Saymon | 59 |
20 | LAGAB Azzedine | 63 |
22 | ROUGIER-LAGANE Christopher | 69 |
25 | HOLLER Nikodemus | 58 |
28 | DE BOD Stefan | 66 |
35 | VAN ENGELEN Adne | 51 |
52 | LINCOLN Yannick | 75 |
53 | MANSOURI Abderrahmane | 66 |
54 | MAYER Alexandre | 64 |
58 | VERMEULEN Moran | 67 |
64 | BELLAN Juraj | 61 |
65 | CULLY Ján Andrej | 73 |
67 | ÁVILA Edwin | 61 |