Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Pellaud
1
70 kgKangangi
4
64 kgEyob
5
61 kgOkubamariam
6
60 kgAreruya
10
74 kgHoller
12
58 kgKipkemboi
15
63 kgvan Engelen
18
51 kgRougier-Lagane
19
69 kgLagab
23
63 kgde Bod
27
66 kgMusie
33
59 kgMugisha
34
62 kgVermeulen
36
67 kgÁvila
49
61 kgMayer
50
64 kgLincoln
56
75 kgMansouri
62
66 kg
1
70 kgKangangi
4
64 kgEyob
5
61 kgOkubamariam
6
60 kgAreruya
10
74 kgHoller
12
58 kgKipkemboi
15
63 kgvan Engelen
18
51 kgRougier-Lagane
19
69 kgLagab
23
63 kgde Bod
27
66 kgMusie
33
59 kgMugisha
34
62 kgVermeulen
36
67 kgÁvila
49
61 kgMayer
50
64 kgLincoln
56
75 kgMansouri
62
66 kg
Weight (KG) →
Result →
75
51
1
62
# | Rider | Weight (KG) |
---|---|---|
1 | PELLAUD Simon | 70 |
4 | KANGANGI Suleiman | 64 |
5 | EYOB Metkel | 61 |
6 | OKUBAMARIAM Tesfom | 60 |
10 | ARERUYA Joseph | 74 |
12 | HOLLER Nikodemus | 58 |
15 | KIPKEMBOI Salim | 63 |
18 | VAN ENGELEN Adne | 51 |
19 | ROUGIER-LAGANE Christopher | 69 |
23 | LAGAB Azzedine | 63 |
27 | DE BOD Stefan | 66 |
33 | MUSIE Saymon | 59 |
34 | MUGISHA Samuel | 62 |
36 | VERMEULEN Moran | 67 |
49 | ÁVILA Edwin | 61 |
50 | MAYER Alexandre | 64 |
56 | LINCOLN Yannick | 75 |
62 | MANSOURI Abderrahmane | 66 |