Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Pellaud 
1
70 kgAreruya
2
74 kgKangangi
4
64 kgOkubamariam
6
60 kgEyob
9
61 kgHoller
12
58 kgKipkemboi
15
63 kgvan Engelen
18
51 kgde Bod
19
66 kgLagab
20
63 kgMugisha
21
62 kgMusie
24
59 kgRougier-Lagane
38
69 kgÁvila
44
61 kgVermeulen
45
67 kgLincoln
52
75 kgMayer
53
64 kgMansouri
58
66 kg
1
70 kgAreruya
2
74 kgKangangi
4
64 kgOkubamariam
6
60 kgEyob
9
61 kgHoller
12
58 kgKipkemboi
15
63 kgvan Engelen
18
51 kgde Bod
19
66 kgLagab
20
63 kgMugisha
21
62 kgMusie
24
59 kgRougier-Lagane
38
69 kgÁvila
44
61 kgVermeulen
45
67 kgLincoln
52
75 kgMayer
53
64 kgMansouri
58
66 kg
Weight (KG) → 
Result → 
75
51
1
58
| # | Rider | Weight (KG) | 
|---|---|---|
| 1 | PELLAUD Simon | 70 | 
| 2 | ARERUYA Joseph | 74 | 
| 4 | KANGANGI Suleiman | 64 | 
| 6 | OKUBAMARIAM Tesfom | 60 | 
| 9 | EYOB Metkel | 61 | 
| 12 | HOLLER Nikodemus | 58 | 
| 15 | KIPKEMBOI Salim | 63 | 
| 18 | VAN ENGELEN Adne | 51 | 
| 19 | DE BOD Stefan | 66 | 
| 20 | LAGAB Azzedine | 63 | 
| 21 | MUGISHA Samuel | 62 | 
| 24 | MUSIE Saymon | 59 | 
| 38 | ROUGIER-LAGANE Christopher | 69 | 
| 44 | ÁVILA Edwin | 61 | 
| 45 | VERMEULEN Moran | 67 | 
| 52 | LINCOLN Yannick | 75 | 
| 53 | MAYER Alexandre | 64 | 
| 58 | MANSOURI Abderrahmane | 66 |