Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Mugisha
2
62 kgLaurance
3
63 kgGeniez
4
68 kgRolland
5
70 kgMadrazo
6
61 kgMulubrhan
8
60 kgTesfatsion
9
60 kgGoldstein
10
61 kgStokbro
11
70 kgAlba
13
59 kgMerchan
14
57 kgMugisha
15
58 kgHoller
16
58 kgGoeman
17
64 kgBoileau
21
57 kgHayter
23
66 kgManizabayo
24
72 kgBudyak
25
53 kg
2
62 kgLaurance
3
63 kgGeniez
4
68 kgRolland
5
70 kgMadrazo
6
61 kgMulubrhan
8
60 kgTesfatsion
9
60 kgGoldstein
10
61 kgStokbro
11
70 kgAlba
13
59 kgMerchan
14
57 kgMugisha
15
58 kgHoller
16
58 kgGoeman
17
64 kgBoileau
21
57 kgHayter
23
66 kgManizabayo
24
72 kgBudyak
25
53 kg
Weight (KG) →
Result →
72
53
2
25
# | Rider | Weight (KG) |
---|---|---|
2 | MUGISHA Samuel | 62 |
3 | LAURANCE Axel | 63 |
4 | GENIEZ Alexandre | 68 |
5 | ROLLAND Pierre | 70 |
6 | MADRAZO Ángel | 61 |
8 | MULUBRHAN Henok | 60 |
9 | TESFATSION Natnael | 60 |
10 | GOLDSTEIN Omer | 61 |
11 | STOKBRO Andreas | 70 |
13 | ALBA Juan Diego | 59 |
14 | MERCHAN Didier | 57 |
15 | MUGISHA Moise | 58 |
16 | HOLLER Nikodemus | 58 |
17 | GOEMAN Andreas | 64 |
21 | BOILEAU Alan | 57 |
23 | HAYTER Leo | 66 |
24 | MANIZABAYO Eric | 72 |
25 | BUDYAK Anatoliy | 53 |