Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Mugisha
1
58 kgGeniez
4
68 kgGoldstein
5
61 kgAparicio
6
69 kgMadrazo
7
61 kgRolland
8
70 kgBoileau
9
57 kgMulubrhan
10
60 kgTesfatsion
11
60 kgMarchand
13
61 kgBudyak
15
53 kgOurselin
17
70 kgRestrepo
18
73 kgAlba
19
59 kgGoeman
20
64 kgGoldstein
21
61 kgHoller
22
58 kgManizabayo
23
72 kgTeugels
25
64 kgHayter
27
66 kgMacKellar
28
69 kg
1
58 kgGeniez
4
68 kgGoldstein
5
61 kgAparicio
6
69 kgMadrazo
7
61 kgRolland
8
70 kgBoileau
9
57 kgMulubrhan
10
60 kgTesfatsion
11
60 kgMarchand
13
61 kgBudyak
15
53 kgOurselin
17
70 kgRestrepo
18
73 kgAlba
19
59 kgGoeman
20
64 kgGoldstein
21
61 kgHoller
22
58 kgManizabayo
23
72 kgTeugels
25
64 kgHayter
27
66 kgMacKellar
28
69 kg
Weight (KG) →
Result →
73
53
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | MUGISHA Moise | 58 |
4 | GENIEZ Alexandre | 68 |
5 | GOLDSTEIN Omer | 61 |
6 | APARICIO Mario | 69 |
7 | MADRAZO Ángel | 61 |
8 | ROLLAND Pierre | 70 |
9 | BOILEAU Alan | 57 |
10 | MULUBRHAN Henok | 60 |
11 | TESFATSION Natnael | 60 |
13 | MARCHAND Gianni | 61 |
15 | BUDYAK Anatoliy | 53 |
17 | OURSELIN Paul | 70 |
18 | RESTREPO Jhonatan | 73 |
19 | ALBA Juan Diego | 59 |
20 | GOEMAN Andreas | 64 |
21 | GOLDSTEIN Edo | 61 |
22 | HOLLER Nikodemus | 58 |
23 | MANIZABAYO Eric | 72 |
25 | TEUGELS Lennert | 64 |
27 | HAYTER Leo | 66 |
28 | MACKELLAR Alastair | 69 |