Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 96
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Jackson
1
63 kgVos
2
58 kgManly
4
53 kgDronova-Balabolina
7
63 kgWood
8
59 kgKessler
9
60 kgFahlin
11
63 kgHosking
12
60 kgGuarischi
16
57 kgKirchmann
18
59 kgPirrone
19
63 kgVerhulst-Wild
20
58 kgVigié
21
58 kgKoster
24
56 kgMackaij
28
57 kgVan de Velde
30
58 kgBrand
31
57 kgKraak
32
52 kgKorevaar
33
59 kg
1
63 kgVos
2
58 kgManly
4
53 kgDronova-Balabolina
7
63 kgWood
8
59 kgKessler
9
60 kgFahlin
11
63 kgHosking
12
60 kgGuarischi
16
57 kgKirchmann
18
59 kgPirrone
19
63 kgVerhulst-Wild
20
58 kgVigié
21
58 kgKoster
24
56 kgMackaij
28
57 kgVan de Velde
30
58 kgBrand
31
57 kgKraak
32
52 kgKorevaar
33
59 kg
Weight (KG) →
Result →
63
52
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | JACKSON Alison | 63 |
2 | VOS Marianne | 58 |
4 | MANLY Alexandra | 53 |
7 | DRONOVA-BALABOLINA Tamara | 63 |
8 | WOOD Alice | 59 |
9 | KESSLER Nina | 60 |
11 | FAHLIN Emilia | 63 |
12 | HOSKING Chloe | 60 |
16 | GUARISCHI Barbara | 57 |
18 | KIRCHMANN Leah | 59 |
19 | PIRRONE Elena | 63 |
20 | VERHULST-WILD Gladys | 58 |
21 | VIGIÉ Margaux | 58 |
24 | KOSTER Anouska | 56 |
28 | MACKAIJ Floortje | 57 |
30 | VAN DE VELDE Julie | 58 |
31 | BRAND Lucinda | 57 |
32 | KRAAK Amber | 52 |
33 | KOREVAAR Jeanne | 59 |