Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 88
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Jackson
1
63 kgVos
2
58 kgManly
4
53 kgDronova-Balabolina
7
63 kgWood
8
59 kgKessler
9
60 kgFahlin
12
63 kgHosking
13
60 kgRoy
15
66 kgGuarischi
18
57 kgKirchmann
19
59 kgKoster
21
56 kgVerhulst-Wild
23
58 kgVigié
24
58 kgVan de Velde
27
58 kgBrand
28
57 kgMackaij
29
57 kgKorevaar
30
59 kgKraak
33
52 kg
1
63 kgVos
2
58 kgManly
4
53 kgDronova-Balabolina
7
63 kgWood
8
59 kgKessler
9
60 kgFahlin
12
63 kgHosking
13
60 kgRoy
15
66 kgGuarischi
18
57 kgKirchmann
19
59 kgKoster
21
56 kgVerhulst-Wild
23
58 kgVigié
24
58 kgVan de Velde
27
58 kgBrand
28
57 kgMackaij
29
57 kgKorevaar
30
59 kgKraak
33
52 kg
Weight (KG) →
Result →
66
52
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | JACKSON Alison | 63 |
2 | VOS Marianne | 58 |
4 | MANLY Alexandra | 53 |
7 | DRONOVA-BALABOLINA Tamara | 63 |
8 | WOOD Alice | 59 |
9 | KESSLER Nina | 60 |
12 | FAHLIN Emilia | 63 |
13 | HOSKING Chloe | 60 |
15 | ROY Sarah | 66 |
18 | GUARISCHI Barbara | 57 |
19 | KIRCHMANN Leah | 59 |
21 | KOSTER Anouska | 56 |
23 | VERHULST-WILD Gladys | 58 |
24 | VIGIÉ Margaux | 58 |
27 | VAN DE VELDE Julie | 58 |
28 | BRAND Lucinda | 57 |
29 | MACKAIJ Floortje | 57 |
30 | KOREVAAR Jeanne | 59 |
33 | KRAAK Amber | 52 |