Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 84
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Jackson
1
63 kgVos
2
58 kgManly
5
53 kgGuarischi
9
57 kgDronova-Balabolina
10
63 kgKessler
11
60 kgWood
12
59 kgTacey
14
62 kgKorevaar
15
59 kgFahlin
17
63 kgHosking
18
60 kgRoy
20
66 kgBrand
22
57 kgBertizzolo
23
54 kgDuval
24
53 kgKirchmann
25
59 kgKoster
27
56 kgVerhulst-Wild
28
58 kgVas
29
51 kgVigié
30
58 kgVan de Velde
34
58 kgMackaij
35
57 kgKraak
38
52 kg
1
63 kgVos
2
58 kgManly
5
53 kgGuarischi
9
57 kgDronova-Balabolina
10
63 kgKessler
11
60 kgWood
12
59 kgTacey
14
62 kgKorevaar
15
59 kgFahlin
17
63 kgHosking
18
60 kgRoy
20
66 kgBrand
22
57 kgBertizzolo
23
54 kgDuval
24
53 kgKirchmann
25
59 kgKoster
27
56 kgVerhulst-Wild
28
58 kgVas
29
51 kgVigié
30
58 kgVan de Velde
34
58 kgMackaij
35
57 kgKraak
38
52 kg
Weight (KG) →
Result →
66
51
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | JACKSON Alison | 63 |
2 | VOS Marianne | 58 |
5 | MANLY Alexandra | 53 |
9 | GUARISCHI Barbara | 57 |
10 | DRONOVA-BALABOLINA Tamara | 63 |
11 | KESSLER Nina | 60 |
12 | WOOD Alice | 59 |
14 | TACEY April | 62 |
15 | KOREVAAR Jeanne | 59 |
17 | FAHLIN Emilia | 63 |
18 | HOSKING Chloe | 60 |
20 | ROY Sarah | 66 |
22 | BRAND Lucinda | 57 |
23 | BERTIZZOLO Sofia | 54 |
24 | DUVAL Eugénie | 53 |
25 | KIRCHMANN Leah | 59 |
27 | KOSTER Anouska | 56 |
28 | VERHULST-WILD Gladys | 58 |
29 | VAS Blanka | 51 |
30 | VIGIÉ Margaux | 58 |
34 | VAN DE VELDE Julie | 58 |
35 | MACKAIJ Floortje | 57 |
38 | KRAAK Amber | 52 |