Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 15
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Mareczko
1
67 kgCoquard
2
59 kgSaleh
3
70 kgPacioni
4
67 kgMorice
5
81 kgStenuit
6
77 kgGoolaerts
7
80 kgBille
8
67 kgLeveau
9
67 kgBoeckmans
10
76 kgAmagoi
11
62 kgVan Breussegem
12
68 kgNakajima
13
64 kgColedan
14
83 kgEikeland
16
68 kgLakasek
17
71 kgMihaylov
19
70 kgDe Witte
20
61 kgMoreno
21
63 kgPapok
22
76 kg
1
67 kgCoquard
2
59 kgSaleh
3
70 kgPacioni
4
67 kgMorice
5
81 kgStenuit
6
77 kgGoolaerts
7
80 kgBille
8
67 kgLeveau
9
67 kgBoeckmans
10
76 kgAmagoi
11
62 kgVan Breussegem
12
68 kgNakajima
13
64 kgColedan
14
83 kgEikeland
16
68 kgLakasek
17
71 kgMihaylov
19
70 kgDe Witte
20
61 kgMoreno
21
63 kgPapok
22
76 kg
Weight (KG) →
Result →
83
59
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | MARECZKO Jakub | 67 |
2 | COQUARD Bryan | 59 |
3 | SALEH Mohd Harrif | 70 |
4 | PACIONI Luca | 67 |
5 | MORICE Julien | 81 |
6 | STENUIT Robin | 77 |
7 | GOOLAERTS Michael | 80 |
8 | BILLE Gaëtan | 67 |
9 | LEVEAU Jérémy | 67 |
10 | BOECKMANS Kris | 76 |
11 | AMAGOI Tatsuki | 62 |
12 | VAN BREUSSEGEM Elias | 68 |
13 | NAKAJIMA Yasuharu | 64 |
14 | COLEDAN Marco | 83 |
16 | EIKELAND Ken Levi | 68 |
17 | LAKASEK Irwandie | 71 |
19 | MIHAYLOV Nikolay | 70 |
20 | DE WITTE Mathias | 61 |
21 | MORENO Javier | 63 |
22 | PAPOK Siarhei | 76 |