Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Bole
1
69 kgPascual
2
66 kgMonk
4
67 kgAït El Abdia
5
66 kgÖzgür
6
75 kgBudyak
7
53 kgSainbayar
8
60 kgBalkan
10
69 kgBogdanovičs
13
68 kgRaileanu
15
63 kgEddy Suhaidee
17
63 kgFomovskiy
18
82 kgButs
19
68 kgHaddi
20
63 kgKubiš
23
70 kgLakasek
25
71 kgOkubamariam
26
60 kgKhafi
27
65 kgBocharov
30
72 kgAsadov
31
77 kgAljaber
33
58 kgMurad
41
82 kg
1
69 kgPascual
2
66 kgMonk
4
67 kgAït El Abdia
5
66 kgÖzgür
6
75 kgBudyak
7
53 kgSainbayar
8
60 kgBalkan
10
69 kgBogdanovičs
13
68 kgRaileanu
15
63 kgEddy Suhaidee
17
63 kgFomovskiy
18
82 kgButs
19
68 kgHaddi
20
63 kgKubiš
23
70 kgLakasek
25
71 kgOkubamariam
26
60 kgKhafi
27
65 kgBocharov
30
72 kgAsadov
31
77 kgAljaber
33
58 kgMurad
41
82 kg
Weight (KG) →
Result →
82
53
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | BOLE Grega | 69 |
2 | PASCUAL Eusebio | 66 |
4 | MONK Cyrus | 67 |
5 | AÏT EL ABDIA Anass | 66 |
6 | ÖZGÜR Batuhan | 75 |
7 | BUDYAK Anatoliy | 53 |
8 | SAINBAYAR Jambaljamts | 60 |
10 | BALKAN Onur | 69 |
13 | BOGDANOVIČS Māris | 68 |
15 | RAILEANU Cristian | 63 |
17 | EDDY SUHAIDEE Muhammad Danieal Haikal | 63 |
18 | FOMOVSKIY Aleksey | 82 |
19 | BUTS Vitaliy | 68 |
20 | HADDI Soufiane | 63 |
23 | KUBIŠ Lukáš | 70 |
25 | LAKASEK Irwandie | 71 |
26 | OKUBAMARIAM Tesfom | 60 |
27 | KHAFI Oussama | 65 |
30 | BOCHAROV Dmitriy | 72 |
31 | ASADOV Elchin | 77 |
33 | ALJABER Mohammed | 58 |
41 | MURAD Tariq | 82 |