Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Rudolph
1
69 kgAnderson
4
68 kgNishitani
10
62 kgSohrabi
11
69 kgKazemi
12
71 kgMizbani
13
67 kgMizurov
15
68 kgSaeidi Tanha
17
70 kgWacker
18
65 kgZargari
19
62 kgFukuda
24
70 kgPriya Prasetya
48
62 kgWijaya
50
58 kgLagab
58
63 kgSaleh
86
58 kgManulang
96
59 kgWu
127
68 kgTang
128
62 kgChtioui
134
82 kg
1
69 kgAnderson
4
68 kgNishitani
10
62 kgSohrabi
11
69 kgKazemi
12
71 kgMizbani
13
67 kgMizurov
15
68 kgSaeidi Tanha
17
70 kgWacker
18
65 kgZargari
19
62 kgFukuda
24
70 kgPriya Prasetya
48
62 kgWijaya
50
58 kgLagab
58
63 kgSaleh
86
58 kgManulang
96
59 kgWu
127
68 kgTang
128
62 kgChtioui
134
82 kg
Weight (KG) →
Result →
82
58
1
134
# | Rider | Weight (KG) |
---|---|---|
1 | RUDOLPH Malcolm | 69 |
4 | ANDERSON Jack | 68 |
10 | NISHITANI Taiji | 62 |
11 | SOHRABI Mehdi | 69 |
12 | KAZEMI Sarai Ahad | 71 |
13 | MIZBANI Ghader | 67 |
15 | MIZUROV Andrey | 68 |
17 | SAEIDI TANHA Abbas | 70 |
18 | WACKER Eugen | 65 |
19 | ZARGARI Amir | 62 |
24 | FUKUDA Shinpei | 70 |
48 | PRIYA PRASETYA Heksa | 62 |
50 | WIJAYA Endra | 58 |
58 | LAGAB Azzedine | 63 |
86 | SALEH Mohd Zamri | 58 |
96 | MANULANG Robin | 59 |
127 | WU Kin San | 68 |
128 | TANG Wang Yip | 62 |
134 | CHTIOUI Rafaâ | 82 |