Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3 * weight + 229
This means that on average for every extra kilogram weight a rider loses -3 positions in the result.
Chtioui
1
82 kgZargari
2
62 kgSaeidi Tanha
5
70 kgSohrabi
6
69 kgMizbani
10
67 kgKazemi
11
71 kgLagab
12
63 kgMizurov
14
68 kgWacker
15
65 kgRudolph
16
69 kgWu
17
68 kgWijaya
27
58 kgAnderson
30
68 kgManulang
55
59 kgNishitani
66
62 kgTang
70
62 kgPriya Prasetya
80
62 kgFukuda
88
70 kgSaleh
114
58 kg
1
82 kgZargari
2
62 kgSaeidi Tanha
5
70 kgSohrabi
6
69 kgMizbani
10
67 kgKazemi
11
71 kgLagab
12
63 kgMizurov
14
68 kgWacker
15
65 kgRudolph
16
69 kgWu
17
68 kgWijaya
27
58 kgAnderson
30
68 kgManulang
55
59 kgNishitani
66
62 kgTang
70
62 kgPriya Prasetya
80
62 kgFukuda
88
70 kgSaleh
114
58 kg
Weight (KG) →
Result →
82
58
1
114
# | Rider | Weight (KG) |
---|---|---|
1 | CHTIOUI Rafaâ | 82 |
2 | ZARGARI Amir | 62 |
5 | SAEIDI TANHA Abbas | 70 |
6 | SOHRABI Mehdi | 69 |
10 | MIZBANI Ghader | 67 |
11 | KAZEMI Sarai Ahad | 71 |
12 | LAGAB Azzedine | 63 |
14 | MIZUROV Andrey | 68 |
15 | WACKER Eugen | 65 |
16 | RUDOLPH Malcolm | 69 |
17 | WU Kin San | 68 |
27 | WIJAYA Endra | 58 |
30 | ANDERSON Jack | 68 |
55 | MANULANG Robin | 59 |
66 | NISHITANI Taiji | 62 |
70 | TANG Wang Yip | 62 |
80 | PRIYA PRASETYA Heksa | 62 |
88 | FUKUDA Shinpei | 70 |
114 | SALEH Mohd Zamri | 58 |