Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.2 * weight + 174
This means that on average for every extra kilogram weight a rider loses -2.2 positions in the result.
Chtioui
2
82 kgSohrabi
3
69 kgWacker
8
65 kgZargari
10
62 kgAnderson
12
68 kgMizurov
14
68 kgLagab
15
63 kgKazemi
24
71 kgSaeidi Tanha
25
70 kgMizbani
26
67 kgWu
29
68 kgWijaya
31
58 kgRudolph
43
69 kgPriya Prasetya
54
62 kgTang
63
62 kgNishitani
68
62 kgManulang
69
59 kg
2
82 kgSohrabi
3
69 kgWacker
8
65 kgZargari
10
62 kgAnderson
12
68 kgMizurov
14
68 kgLagab
15
63 kgKazemi
24
71 kgSaeidi Tanha
25
70 kgMizbani
26
67 kgWu
29
68 kgWijaya
31
58 kgRudolph
43
69 kgPriya Prasetya
54
62 kgTang
63
62 kgNishitani
68
62 kgManulang
69
59 kg
Weight (KG) →
Result →
82
58
2
69
# | Rider | Weight (KG) |
---|---|---|
2 | CHTIOUI Rafaâ | 82 |
3 | SOHRABI Mehdi | 69 |
8 | WACKER Eugen | 65 |
10 | ZARGARI Amir | 62 |
12 | ANDERSON Jack | 68 |
14 | MIZUROV Andrey | 68 |
15 | LAGAB Azzedine | 63 |
24 | KAZEMI Sarai Ahad | 71 |
25 | SAEIDI TANHA Abbas | 70 |
26 | MIZBANI Ghader | 67 |
29 | WU Kin San | 68 |
31 | WIJAYA Endra | 58 |
43 | RUDOLPH Malcolm | 69 |
54 | PRIYA PRASETYA Heksa | 62 |
63 | TANG Wang Yip | 62 |
68 | NISHITANI Taiji | 62 |
69 | MANULANG Robin | 59 |