Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Crawford
2
59 kgFeng
3
68 kgYamamoto
8
62 kgNakajima
12
64 kgPujol
13
58 kgCahyadi
27
52 kgDougall
29
72 kgEbsen
31
58 kgPriya Prasetya
39
62 kgWijaya
42
58 kgEdmondson
52
75 kgSaeidi Tanha
55
70 kgSaleh
74
58 kgManulang
75
59 kgHirai
80
63 kgGoh
84
54 kgSaleh
112
70 kg
2
59 kgFeng
3
68 kgYamamoto
8
62 kgNakajima
12
64 kgPujol
13
58 kgCahyadi
27
52 kgDougall
29
72 kgEbsen
31
58 kgPriya Prasetya
39
62 kgWijaya
42
58 kgEdmondson
52
75 kgSaeidi Tanha
55
70 kgSaleh
74
58 kgManulang
75
59 kgHirai
80
63 kgGoh
84
54 kgSaleh
112
70 kg
Weight (KG) →
Result →
75
52
2
112
# | Rider | Weight (KG) |
---|---|---|
2 | CRAWFORD Jai | 59 |
3 | FENG Chun Kai | 68 |
8 | YAMAMOTO Genki | 62 |
12 | NAKAJIMA Yasuharu | 64 |
13 | PUJOL Óscar | 58 |
27 | CAHYADI Aiman | 52 |
29 | DOUGALL Nic | 72 |
31 | EBSEN John | 58 |
39 | PRIYA PRASETYA Heksa | 62 |
42 | WIJAYA Endra | 58 |
52 | EDMONDSON Alex | 75 |
55 | SAEIDI TANHA Abbas | 70 |
74 | SALEH Mohd Zamri | 58 |
75 | MANULANG Robin | 59 |
80 | HIRAI Eiichi | 63 |
84 | GOH Choon Huat | 54 |
112 | SALEH Mohd Harrif | 70 |