Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 87
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Edmondson
2
75 kgPujol
6
58 kgPriya Prasetya
12
62 kgCrawford
18
59 kgFeng
23
69 kgWijaya
24
58 kgNakajima
31
64 kgYamamoto
32
62 kgCahyadi
33
52 kgDougall
34
72 kgEbsen
54
58 kgSaeidi Tanha
61
70 kgGoh
85
54 kgManulang
90
59 kgSaleh
93
58 kgHirai
94
63 kgSaleh
107
70 kg
2
75 kgPujol
6
58 kgPriya Prasetya
12
62 kgCrawford
18
59 kgFeng
23
69 kgWijaya
24
58 kgNakajima
31
64 kgYamamoto
32
62 kgCahyadi
33
52 kgDougall
34
72 kgEbsen
54
58 kgSaeidi Tanha
61
70 kgGoh
85
54 kgManulang
90
59 kgSaleh
93
58 kgHirai
94
63 kgSaleh
107
70 kg
Weight (KG) →
Result →
75
52
2
107
# | Rider | Weight (KG) |
---|---|---|
2 | EDMONDSON Alex | 75 |
6 | PUJOL Óscar | 58 |
12 | PRIYA PRASETYA Heksa | 62 |
18 | CRAWFORD Jai | 59 |
23 | FENG Chun Kai | 69 |
24 | WIJAYA Endra | 58 |
31 | NAKAJIMA Yasuharu | 64 |
32 | YAMAMOTO Genki | 62 |
33 | CAHYADI Aiman | 52 |
34 | DOUGALL Nic | 72 |
54 | EBSEN John | 58 |
61 | SAEIDI TANHA Abbas | 70 |
85 | GOH Choon Huat | 54 |
90 | MANULANG Robin | 59 |
93 | SALEH Mohd Zamri | 58 |
94 | HIRAI Eiichi | 63 |
107 | SALEH Mohd Harrif | 70 |