Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Crawford
2
59 kgFeng
3
68 kgYamamoto
7
62 kgPujol
10
58 kgCahyadi
22
52 kgDougall
23
72 kgEbsen
25
58 kgPriya Prasetya
32
62 kgWijaya
34
58 kgSaeidi Tanha
39
70 kgEdmondson
59
75 kgNakajima
65
64 kgManulang
68
59 kgHirai
70
63 kgSaleh
79
58 kgGoh
82
54 kgSaleh
106
70 kg
2
59 kgFeng
3
68 kgYamamoto
7
62 kgPujol
10
58 kgCahyadi
22
52 kgDougall
23
72 kgEbsen
25
58 kgPriya Prasetya
32
62 kgWijaya
34
58 kgSaeidi Tanha
39
70 kgEdmondson
59
75 kgNakajima
65
64 kgManulang
68
59 kgHirai
70
63 kgSaleh
79
58 kgGoh
82
54 kgSaleh
106
70 kg
Weight (KG) →
Result →
75
52
2
106
| # | Rider | Weight (KG) |
|---|---|---|
| 2 | CRAWFORD Jai | 59 |
| 3 | FENG Chun Kai | 68 |
| 7 | YAMAMOTO Genki | 62 |
| 10 | PUJOL Óscar | 58 |
| 22 | CAHYADI Aiman | 52 |
| 23 | DOUGALL Nic | 72 |
| 25 | EBSEN John | 58 |
| 32 | PRIYA PRASETYA Heksa | 62 |
| 34 | WIJAYA Endra | 58 |
| 39 | SAEIDI TANHA Abbas | 70 |
| 59 | EDMONDSON Alex | 75 |
| 65 | NAKAJIMA Yasuharu | 64 |
| 68 | MANULANG Robin | 59 |
| 70 | HIRAI Eiichi | 63 |
| 79 | SALEH Mohd Zamri | 58 |
| 82 | GOH Choon Huat | 54 |
| 106 | SALEH Mohd Harrif | 70 |