Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 67
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Pujol
1
58 kgManulang
7
59 kgPriya Prasetya
8
62 kgHirai
9
63 kgCrawford
10
59 kgWijaya
15
58 kgYamamoto
23
62 kgCahyadi
28
52 kgFeng
29
69 kgEbsen
34
58 kgDougall
40
72 kgSaeidi Tanha
43
70 kgGoh
72
54 kgSaleh
74
58 kgEdmondson
76
75 kgNakajima
84
64 kgSaleh
100
70 kg
1
58 kgManulang
7
59 kgPriya Prasetya
8
62 kgHirai
9
63 kgCrawford
10
59 kgWijaya
15
58 kgYamamoto
23
62 kgCahyadi
28
52 kgFeng
29
69 kgEbsen
34
58 kgDougall
40
72 kgSaeidi Tanha
43
70 kgGoh
72
54 kgSaleh
74
58 kgEdmondson
76
75 kgNakajima
84
64 kgSaleh
100
70 kg
Weight (KG) →
Result →
75
52
1
100
# | Rider | Weight (KG) |
---|---|---|
1 | PUJOL Óscar | 58 |
7 | MANULANG Robin | 59 |
8 | PRIYA PRASETYA Heksa | 62 |
9 | HIRAI Eiichi | 63 |
10 | CRAWFORD Jai | 59 |
15 | WIJAYA Endra | 58 |
23 | YAMAMOTO Genki | 62 |
28 | CAHYADI Aiman | 52 |
29 | FENG Chun Kai | 69 |
34 | EBSEN John | 58 |
40 | DOUGALL Nic | 72 |
43 | SAEIDI TANHA Abbas | 70 |
72 | GOH Choon Huat | 54 |
74 | SALEH Mohd Zamri | 58 |
76 | EDMONDSON Alex | 75 |
84 | NAKAJIMA Yasuharu | 64 |
100 | SALEH Mohd Harrif | 70 |