Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Saleh
1
58 kgWijaya
14
58 kgCamingao
16
55 kgCariño
21
54 kgCoenen
24
67 kgCahyadi
26
52 kgGuardiola
29
65 kgAskari
31
73 kgManulang
30
59 kgMizbani
33
67 kgIrawan
42
51 kgKolahdozhagh
46
60 kgYamamoto
47
56 kgOranza
58
67 kgSohrabi
63
69 kgNovardianto
71
69 kgPujol
73
58 kgNieto
79
58 kg
1
58 kgWijaya
14
58 kgCamingao
16
55 kgCariño
21
54 kgCoenen
24
67 kgCahyadi
26
52 kgGuardiola
29
65 kgAskari
31
73 kgManulang
30
59 kgMizbani
33
67 kgIrawan
42
51 kgKolahdozhagh
46
60 kgYamamoto
47
56 kgOranza
58
67 kgSohrabi
63
69 kgNovardianto
71
69 kgPujol
73
58 kgNieto
79
58 kg
Weight (KG) →
Result →
73
51
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | SALEH Mohd Zamri | 58 |
14 | WIJAYA Endra | 58 |
16 | CAMINGAO John Mark | 55 |
21 | CARIÑO El Joshua | 54 |
24 | COENEN Johan | 67 |
26 | CAHYADI Aiman | 52 |
29 | GUARDIOLA Salvador | 65 |
31 | ASKARI Hossein | 73 |
30 | MANULANG Robin | 59 |
33 | MIZBANI Ghader | 67 |
42 | IRAWAN Jefri | 51 |
46 | KOLAHDOZHAGH Amir | 60 |
47 | YAMAMOTO Shun | 56 |
58 | ORANZA Ronald | 67 |
63 | SOHRABI Mehdi | 69 |
71 | NOVARDIANTO Jamalidin | 69 |
73 | PUJOL Óscar | 58 |
79 | NIETO Edgar | 58 |