Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 94
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Sohrabi
1
69 kgSaleh
4
58 kgGuardiola
14
65 kgCahyadi
31
52 kgNovardianto
32
69 kgManulang
37
59 kgAskari
44
73 kgWijaya
43
58 kgPujol
50
58 kgIrawan
54
51 kgKolahdozhagh
58
60 kgCoenen
60
67 kgYamamoto
64
56 kgMizbani
66
67 kgCariño
69
54 kgCamingao
72
55 kgOranza
75
67 kgNieto
77
58 kg
1
69 kgSaleh
4
58 kgGuardiola
14
65 kgCahyadi
31
52 kgNovardianto
32
69 kgManulang
37
59 kgAskari
44
73 kgWijaya
43
58 kgPujol
50
58 kgIrawan
54
51 kgKolahdozhagh
58
60 kgCoenen
60
67 kgYamamoto
64
56 kgMizbani
66
67 kgCariño
69
54 kgCamingao
72
55 kgOranza
75
67 kgNieto
77
58 kg
Weight (KG) →
Result →
73
51
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | SOHRABI Mehdi | 69 |
4 | SALEH Mohd Zamri | 58 |
14 | GUARDIOLA Salvador | 65 |
31 | CAHYADI Aiman | 52 |
32 | NOVARDIANTO Jamalidin | 69 |
37 | MANULANG Robin | 59 |
44 | ASKARI Hossein | 73 |
43 | WIJAYA Endra | 58 |
50 | PUJOL Óscar | 58 |
54 | IRAWAN Jefri | 51 |
58 | KOLAHDOZHAGH Amir | 60 |
60 | COENEN Johan | 67 |
64 | YAMAMOTO Shun | 56 |
66 | MIZBANI Ghader | 67 |
69 | CARIÑO El Joshua | 54 |
72 | CAMINGAO John Mark | 55 |
75 | ORANZA Ronald | 67 |
77 | NIETO Edgar | 58 |