Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 134
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
García
1
68 kgKolahdozhagh
2
60 kgGarcia
8
55 kgFelipe
12
58 kgManulang
14
59 kgNewbery
17
75 kgGaledo
18
58 kgNovardianto
22
69 kgCrawford
24
59 kgChoi
25
53 kgWijaya
27
58 kgAso
28
67 kgGoh
29
54 kgSetiawan
32
61 kgVolkers
34
67 kgIrawan
38
51 kgJang
48
64 kgNieto
53
58 kgMazuki
66
57 kgFikri Azka
79
54 kgMat Amin
82
54 kgYudha
83
51.5 kg
1
68 kgKolahdozhagh
2
60 kgGarcia
8
55 kgFelipe
12
58 kgManulang
14
59 kgNewbery
17
75 kgGaledo
18
58 kgNovardianto
22
69 kgCrawford
24
59 kgChoi
25
53 kgWijaya
27
58 kgAso
28
67 kgGoh
29
54 kgSetiawan
32
61 kgVolkers
34
67 kgIrawan
38
51 kgJang
48
64 kgNieto
53
58 kgMazuki
66
57 kgFikri Azka
79
54 kgMat Amin
82
54 kgYudha
83
51.5 kg
Weight (KG) →
Result →
75
51
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | GARCÍA Ricardo | 68 |
2 | KOLAHDOZHAGH Amir | 60 |
8 | GARCIA Marcos | 55 |
12 | FELIPE Marcelo | 58 |
14 | MANULANG Robin | 59 |
17 | NEWBERY Dylan | 75 |
18 | GALEDO Mark John Lexer | 58 |
22 | NOVARDIANTO Jamalidin | 69 |
24 | CRAWFORD Jai | 59 |
25 | CHOI Hiu Fung | 53 |
27 | WIJAYA Endra | 58 |
28 | ASO Keisuke | 67 |
29 | GOH Choon Huat | 54 |
32 | SETIAWAN Andreas Odie Purnama | 61 |
34 | VOLKERS Samuel | 67 |
38 | IRAWAN Jefri | 51 |
48 | JANG Kyung-Gu | 64 |
53 | NIETO Edgar | 58 |
66 | MAZUKI Nur Amirul Fakhruddin | 57 |
79 | FIKRI AZKA Mohammad | 54 |
82 | MAT AMIN Mohd Shahrul | 54 |
83 | YUDHA Muhammad | 51.5 |