Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 123
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
García
1
68 kgKolahdozhagh
3
60 kgGarcia
8
55 kgVolkers
11
67 kgFelipe
15
58 kgGaledo
16
58 kgNovardianto
19
69 kgGoh
21
54 kgAso
24
67 kgChoi
27
53 kgWijaya
29
58 kgSetiawan
33
61 kgManulang
36
59 kgCrawford
37
59 kgJang
39
64 kgNewbery
51
75 kgFikri Azka
57
54 kgMazuki
59
57 kgIrawan
62
51 kgMat Amin
75
54 kgNieto
80
58 kgYudha
84
51.5 kg
1
68 kgKolahdozhagh
3
60 kgGarcia
8
55 kgVolkers
11
67 kgFelipe
15
58 kgGaledo
16
58 kgNovardianto
19
69 kgGoh
21
54 kgAso
24
67 kgChoi
27
53 kgWijaya
29
58 kgSetiawan
33
61 kgManulang
36
59 kgCrawford
37
59 kgJang
39
64 kgNewbery
51
75 kgFikri Azka
57
54 kgMazuki
59
57 kgIrawan
62
51 kgMat Amin
75
54 kgNieto
80
58 kgYudha
84
51.5 kg
Weight (KG) →
Result →
75
51
1
84
# | Rider | Weight (KG) |
---|---|---|
1 | GARCÍA Ricardo | 68 |
3 | KOLAHDOZHAGH Amir | 60 |
8 | GARCIA Marcos | 55 |
11 | VOLKERS Samuel | 67 |
15 | FELIPE Marcelo | 58 |
16 | GALEDO Mark John Lexer | 58 |
19 | NOVARDIANTO Jamalidin | 69 |
21 | GOH Choon Huat | 54 |
24 | ASO Keisuke | 67 |
27 | CHOI Hiu Fung | 53 |
29 | WIJAYA Endra | 58 |
33 | SETIAWAN Andreas Odie Purnama | 61 |
36 | MANULANG Robin | 59 |
37 | CRAWFORD Jai | 59 |
39 | JANG Kyung-Gu | 64 |
51 | NEWBERY Dylan | 75 |
57 | FIKRI AZKA Mohammad | 54 |
59 | MAZUKI Nur Amirul Fakhruddin | 57 |
62 | IRAWAN Jefri | 51 |
75 | MAT AMIN Mohd Shahrul | 54 |
80 | NIETO Edgar | 58 |
84 | YUDHA Muhammad | 51.5 |