Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Kolahdozhagh
1
60 kgJang
5
64 kgGarcía
6
68 kgGoh
7
54 kgManulang
8
59 kgFelipe
9
58 kgChoi
16
53 kgGarcia
21
55 kgNovardianto
23
69 kgSetiawan
29
61 kgGaledo
31
58 kgWijaya
32
58 kgCrawford
39
59 kgIrawan
45
51 kgNewbery
52
75 kgNieto
53
58 kgAso
65
67 kgFikri Azka
68
54 kgVolkers
74
67 kgMat Amin
76
54 kgMazuki
78
57 kgYudha
80
51.5 kg
1
60 kgJang
5
64 kgGarcía
6
68 kgGoh
7
54 kgManulang
8
59 kgFelipe
9
58 kgChoi
16
53 kgGarcia
21
55 kgNovardianto
23
69 kgSetiawan
29
61 kgGaledo
31
58 kgWijaya
32
58 kgCrawford
39
59 kgIrawan
45
51 kgNewbery
52
75 kgNieto
53
58 kgAso
65
67 kgFikri Azka
68
54 kgVolkers
74
67 kgMat Amin
76
54 kgMazuki
78
57 kgYudha
80
51.5 kg
Weight (KG) →
Result →
75
51
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | KOLAHDOZHAGH Amir | 60 |
5 | JANG Kyung-Gu | 64 |
6 | GARCÍA Ricardo | 68 |
7 | GOH Choon Huat | 54 |
8 | MANULANG Robin | 59 |
9 | FELIPE Marcelo | 58 |
16 | CHOI Hiu Fung | 53 |
21 | GARCIA Marcos | 55 |
23 | NOVARDIANTO Jamalidin | 69 |
29 | SETIAWAN Andreas Odie Purnama | 61 |
31 | GALEDO Mark John Lexer | 58 |
32 | WIJAYA Endra | 58 |
39 | CRAWFORD Jai | 59 |
45 | IRAWAN Jefri | 51 |
52 | NEWBERY Dylan | 75 |
53 | NIETO Edgar | 58 |
65 | ASO Keisuke | 67 |
68 | FIKRI AZKA Mohammad | 54 |
74 | VOLKERS Samuel | 67 |
76 | MAT AMIN Mohd Shahrul | 54 |
78 | MAZUKI Nur Amirul Fakhruddin | 57 |
80 | YUDHA Muhammad | 51.5 |