Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 96
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Kolahdozhagh
1
60 kgGarcía
3
68 kgFelipe
7
58 kgGarcia
9
55 kgManulang
10
59 kgGoh
14
54 kgChoi
19
53 kgNovardianto
22
69 kgGaledo
24
58 kgSetiawan
25
61 kgWijaya
26
58 kgCrawford
29
59 kgJang
36
64 kgNewbery
37
75 kgIrawan
39
51 kgAso
42
67 kgVolkers
43
67 kgNieto
51
58 kgMazuki
69
57 kgFikri Azka
77
54 kgMat Amin
81
54 kgYudha
84
51.5 kg
1
60 kgGarcía
3
68 kgFelipe
7
58 kgGarcia
9
55 kgManulang
10
59 kgGoh
14
54 kgChoi
19
53 kgNovardianto
22
69 kgGaledo
24
58 kgSetiawan
25
61 kgWijaya
26
58 kgCrawford
29
59 kgJang
36
64 kgNewbery
37
75 kgIrawan
39
51 kgAso
42
67 kgVolkers
43
67 kgNieto
51
58 kgMazuki
69
57 kgFikri Azka
77
54 kgMat Amin
81
54 kgYudha
84
51.5 kg
Weight (KG) →
Result →
75
51
1
84
# | Rider | Weight (KG) |
---|---|---|
1 | KOLAHDOZHAGH Amir | 60 |
3 | GARCÍA Ricardo | 68 |
7 | FELIPE Marcelo | 58 |
9 | GARCIA Marcos | 55 |
10 | MANULANG Robin | 59 |
14 | GOH Choon Huat | 54 |
19 | CHOI Hiu Fung | 53 |
22 | NOVARDIANTO Jamalidin | 69 |
24 | GALEDO Mark John Lexer | 58 |
25 | SETIAWAN Andreas Odie Purnama | 61 |
26 | WIJAYA Endra | 58 |
29 | CRAWFORD Jai | 59 |
36 | JANG Kyung-Gu | 64 |
37 | NEWBERY Dylan | 75 |
39 | IRAWAN Jefri | 51 |
42 | ASO Keisuke | 67 |
43 | VOLKERS Samuel | 67 |
51 | NIETO Edgar | 58 |
69 | MAZUKI Nur Amirul Fakhruddin | 57 |
77 | FIKRI AZKA Mohammad | 54 |
81 | MAT AMIN Mohd Shahrul | 54 |
84 | YUDHA Muhammad | 51.5 |