Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 78
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Volkers
2
67 kgMazuki
18
57 kgManulang
19
59 kgNovardianto
23
69 kgGarcía
26
68 kgIrawan
27
51 kgKolahdozhagh
28
60 kgGarcia
29
55 kgChoi
33
53 kgFelipe
43
58 kgWijaya
46
58 kgSetiawan
47
61 kgCrawford
50
59 kgGoh
55
54 kgMat Amin
57
54 kgNewbery
59
75 kgAso
60
67 kgNieto
62
58 kgJang
64
64 kgFikri Azka
67
54 kgGaledo
68
58 kgYudha
81
51.5 kg
2
67 kgMazuki
18
57 kgManulang
19
59 kgNovardianto
23
69 kgGarcía
26
68 kgIrawan
27
51 kgKolahdozhagh
28
60 kgGarcia
29
55 kgChoi
33
53 kgFelipe
43
58 kgWijaya
46
58 kgSetiawan
47
61 kgCrawford
50
59 kgGoh
55
54 kgMat Amin
57
54 kgNewbery
59
75 kgAso
60
67 kgNieto
62
58 kgJang
64
64 kgFikri Azka
67
54 kgGaledo
68
58 kgYudha
81
51.5 kg
Weight (KG) →
Result →
75
51
2
81
# | Rider | Weight (KG) |
---|---|---|
2 | VOLKERS Samuel | 67 |
18 | MAZUKI Nur Amirul Fakhruddin | 57 |
19 | MANULANG Robin | 59 |
23 | NOVARDIANTO Jamalidin | 69 |
26 | GARCÍA Ricardo | 68 |
27 | IRAWAN Jefri | 51 |
28 | KOLAHDOZHAGH Amir | 60 |
29 | GARCIA Marcos | 55 |
33 | CHOI Hiu Fung | 53 |
43 | FELIPE Marcelo | 58 |
46 | WIJAYA Endra | 58 |
47 | SETIAWAN Andreas Odie Purnama | 61 |
50 | CRAWFORD Jai | 59 |
55 | GOH Choon Huat | 54 |
57 | MAT AMIN Mohd Shahrul | 54 |
59 | NEWBERY Dylan | 75 |
60 | ASO Keisuke | 67 |
62 | NIETO Edgar | 58 |
64 | JANG Kyung-Gu | 64 |
67 | FIKRI AZKA Mohammad | 54 |
68 | GALEDO Mark John Lexer | 58 |
81 | YUDHA Muhammad | 51.5 |