Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Jang
1
64 kgGarcia
3
55 kgGaledo
5
58 kgGoh
7
54 kgSetiawan
13
61 kgKolahdozhagh
17
60 kgGarcía
18
68 kgFelipe
21
58 kgNieto
23
58 kgNewbery
25
75 kgWijaya
28
58 kgCrawford
36
59 kgMat Amin
37
54 kgManulang
41
59 kgChoi
44
53 kgVolkers
53
67 kgIrawan
54
51 kgAso
56
67 kgMazuki
62
57 kgNovardianto
66
69 kgYudha
76
51.5 kg
1
64 kgGarcia
3
55 kgGaledo
5
58 kgGoh
7
54 kgSetiawan
13
61 kgKolahdozhagh
17
60 kgGarcía
18
68 kgFelipe
21
58 kgNieto
23
58 kgNewbery
25
75 kgWijaya
28
58 kgCrawford
36
59 kgMat Amin
37
54 kgManulang
41
59 kgChoi
44
53 kgVolkers
53
67 kgIrawan
54
51 kgAso
56
67 kgMazuki
62
57 kgNovardianto
66
69 kgYudha
76
51.5 kg
Weight (KG) →
Result →
75
51
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | JANG Kyung-Gu | 64 |
3 | GARCIA Marcos | 55 |
5 | GALEDO Mark John Lexer | 58 |
7 | GOH Choon Huat | 54 |
13 | SETIAWAN Andreas Odie Purnama | 61 |
17 | KOLAHDOZHAGH Amir | 60 |
18 | GARCÍA Ricardo | 68 |
21 | FELIPE Marcelo | 58 |
23 | NIETO Edgar | 58 |
25 | NEWBERY Dylan | 75 |
28 | WIJAYA Endra | 58 |
36 | CRAWFORD Jai | 59 |
37 | MAT AMIN Mohd Shahrul | 54 |
41 | MANULANG Robin | 59 |
44 | CHOI Hiu Fung | 53 |
53 | VOLKERS Samuel | 67 |
54 | IRAWAN Jefri | 51 |
56 | ASO Keisuke | 67 |
62 | MAZUKI Nur Amirul Fakhruddin | 57 |
66 | NOVARDIANTO Jamalidin | 69 |
76 | YUDHA Muhammad | 51.5 |