Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Kolahdozhagh
1
60 kgGarcía
3
68 kgGarcia
7
55 kgFelipe
9
58 kgGoh
12
54 kgGaledo
17
58 kgSetiawan
18
61 kgManulang
20
59 kgJang
21
64 kgWijaya
23
58 kgCrawford
26
59 kgNewbery
30
75 kgChoi
34
53 kgNovardianto
37
69 kgNieto
39
58 kgIrawan
43
51 kgVolkers
46
67 kgAso
47
67 kgMazuki
62
57 kgMat Amin
68
54 kg
1
60 kgGarcía
3
68 kgGarcia
7
55 kgFelipe
9
58 kgGoh
12
54 kgGaledo
17
58 kgSetiawan
18
61 kgManulang
20
59 kgJang
21
64 kgWijaya
23
58 kgCrawford
26
59 kgNewbery
30
75 kgChoi
34
53 kgNovardianto
37
69 kgNieto
39
58 kgIrawan
43
51 kgVolkers
46
67 kgAso
47
67 kgMazuki
62
57 kgMat Amin
68
54 kg
Weight (KG) →
Result →
75
51
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | KOLAHDOZHAGH Amir | 60 |
3 | GARCÍA Ricardo | 68 |
7 | GARCIA Marcos | 55 |
9 | FELIPE Marcelo | 58 |
12 | GOH Choon Huat | 54 |
17 | GALEDO Mark John Lexer | 58 |
18 | SETIAWAN Andreas Odie Purnama | 61 |
20 | MANULANG Robin | 59 |
21 | JANG Kyung-Gu | 64 |
23 | WIJAYA Endra | 58 |
26 | CRAWFORD Jai | 59 |
30 | NEWBERY Dylan | 75 |
34 | CHOI Hiu Fung | 53 |
37 | NOVARDIANTO Jamalidin | 69 |
39 | NIETO Edgar | 58 |
43 | IRAWAN Jefri | 51 |
46 | VOLKERS Samuel | 67 |
47 | ASO Keisuke | 67 |
62 | MAZUKI Nur Amirul Fakhruddin | 57 |
68 | MAT AMIN Mohd Shahrul | 54 |