Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 27
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Novardianto
2
69 kgFelipe
8
58 kgNewbery
21
75 kgMazuki
23
57 kgKolahdozhagh
26
60 kgChoi
28
53 kgWijaya
30
58 kgIrawan
31
51 kgMat Amin
32
54 kgGarcía
33
68 kgManulang
34
59 kgGarcia
35
55 kgCrawford
36
59 kgNieto
38
58 kgSetiawan
40
61 kgGaledo
49
58 kgGoh
50
54 kgJang
51
64 kgVolkers
69
67 kgAso
70
67 kg
2
69 kgFelipe
8
58 kgNewbery
21
75 kgMazuki
23
57 kgKolahdozhagh
26
60 kgChoi
28
53 kgWijaya
30
58 kgIrawan
31
51 kgMat Amin
32
54 kgGarcía
33
68 kgManulang
34
59 kgGarcia
35
55 kgCrawford
36
59 kgNieto
38
58 kgSetiawan
40
61 kgGaledo
49
58 kgGoh
50
54 kgJang
51
64 kgVolkers
69
67 kgAso
70
67 kg
Weight (KG) →
Result →
75
51
2
70
# | Rider | Weight (KG) |
---|---|---|
2 | NOVARDIANTO Jamalidin | 69 |
8 | FELIPE Marcelo | 58 |
21 | NEWBERY Dylan | 75 |
23 | MAZUKI Nur Amirul Fakhruddin | 57 |
26 | KOLAHDOZHAGH Amir | 60 |
28 | CHOI Hiu Fung | 53 |
30 | WIJAYA Endra | 58 |
31 | IRAWAN Jefri | 51 |
32 | MAT AMIN Mohd Shahrul | 54 |
33 | GARCÍA Ricardo | 68 |
34 | MANULANG Robin | 59 |
35 | GARCIA Marcos | 55 |
36 | CRAWFORD Jai | 59 |
38 | NIETO Edgar | 58 |
40 | SETIAWAN Andreas Odie Purnama | 61 |
49 | GALEDO Mark John Lexer | 58 |
50 | GOH Choon Huat | 54 |
51 | JANG Kyung-Gu | 64 |
69 | VOLKERS Samuel | 67 |
70 | ASO Keisuke | 67 |