Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Mat Amin
1
54 kgNovardianto
3
69 kgKolahdozhagh
11
60 kgIrawan
15
51 kgGarcía
19
68 kgJang
21
64 kgWijaya
23
58 kgNieto
26
58 kgMazuki
28
57 kgManulang
29
59 kgSetiawan
30
61 kgFelipe
31
58 kgVolkers
35
67 kgGaledo
45
58 kgGarcia
48
55 kgGoh
59
54 kgNewbery
65
75 kgCrawford
67
59 kgChoi
68
53 kgAso
71
67 kg
1
54 kgNovardianto
3
69 kgKolahdozhagh
11
60 kgIrawan
15
51 kgGarcía
19
68 kgJang
21
64 kgWijaya
23
58 kgNieto
26
58 kgMazuki
28
57 kgManulang
29
59 kgSetiawan
30
61 kgFelipe
31
58 kgVolkers
35
67 kgGaledo
45
58 kgGarcia
48
55 kgGoh
59
54 kgNewbery
65
75 kgCrawford
67
59 kgChoi
68
53 kgAso
71
67 kg
Weight (KG) →
Result →
75
51
1
71
# | Rider | Weight (KG) |
---|---|---|
1 | MAT AMIN Mohd Shahrul | 54 |
3 | NOVARDIANTO Jamalidin | 69 |
11 | KOLAHDOZHAGH Amir | 60 |
15 | IRAWAN Jefri | 51 |
19 | GARCÍA Ricardo | 68 |
21 | JANG Kyung-Gu | 64 |
23 | WIJAYA Endra | 58 |
26 | NIETO Edgar | 58 |
28 | MAZUKI Nur Amirul Fakhruddin | 57 |
29 | MANULANG Robin | 59 |
30 | SETIAWAN Andreas Odie Purnama | 61 |
31 | FELIPE Marcelo | 58 |
35 | VOLKERS Samuel | 67 |
45 | GALEDO Mark John Lexer | 58 |
48 | GARCIA Marcos | 55 |
59 | GOH Choon Huat | 54 |
65 | NEWBERY Dylan | 75 |
67 | CRAWFORD Jai | 59 |
68 | CHOI Hiu Fung | 53 |
71 | ASO Keisuke | 67 |