Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Hibatulah
2
55 kgCahyadi
3
52 kgWhitehouse
4
58 kgChawchiangkwang
5
64 kgMizbani
6
67 kgGoh
9
54 kgVolkers
11
67 kgMonsalve
13
62 kgNieto
16
58 kgFelipe
17
58 kgKurniawan
19
55 kgBoonratanathanakorn
23
72 kgLiphongyu
25
61 kgMat Amin
26
54 kgSai-udomsin
27
60 kgGaledo
28
58 kgAbdurrahman
30
56 kgAzman
31
57 kgNovardianto
33
69 kgMazuki
34
57 kg
2
55 kgCahyadi
3
52 kgWhitehouse
4
58 kgChawchiangkwang
5
64 kgMizbani
6
67 kgGoh
9
54 kgVolkers
11
67 kgMonsalve
13
62 kgNieto
16
58 kgFelipe
17
58 kgKurniawan
19
55 kgBoonratanathanakorn
23
72 kgLiphongyu
25
61 kgMat Amin
26
54 kgSai-udomsin
27
60 kgGaledo
28
58 kgAbdurrahman
30
56 kgAzman
31
57 kgNovardianto
33
69 kgMazuki
34
57 kg
Weight (KG) →
Result →
72
52
2
34
# | Rider | Weight (KG) |
---|---|---|
2 | HIBATULAH Jamal | 55 |
3 | CAHYADI Aiman | 52 |
4 | WHITEHOUSE Daniel | 58 |
5 | CHAWCHIANGKWANG Peerapol | 64 |
6 | MIZBANI Ghader | 67 |
9 | GOH Choon Huat | 54 |
11 | VOLKERS Samuel | 67 |
13 | MONSALVE Yonathan | 62 |
16 | NIETO Edgar | 58 |
17 | FELIPE Marcelo | 58 |
19 | KURNIAWAN Maulana Fahrizal | 55 |
23 | BOONRATANATHANAKORN Turakit | 72 |
25 | LIPHONGYU Navuti | 61 |
26 | MAT AMIN Mohd Shahrul | 54 |
27 | SAI-UDOMSIN Phuchong | 60 |
28 | GALEDO Mark John Lexer | 58 |
30 | ABDURRAHMAN Muhammad | 56 |
31 | AZMAN Muhamad Zawawi | 57 |
33 | NOVARDIANTO Jamalidin | 69 |
34 | MAZUKI Nur Amirul Fakhruddin | 57 |