Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Whitehouse
2
58 kgHibatulah
3
55 kgCahyadi
5
52 kgMonsalve
8
62 kgChawchiangkwang
10
64 kgBoonratanathanakorn
11
72 kgGoh
12
54 kgFelipe
13
58 kgVolkers
15
67 kgSai-udomsin
18
60 kgNieto
20
58 kgSafarzadeh
23
66 kgMazuki
29
57 kgAzman
31
57 kgLiphongyu
33
61 kgMohd Zariff
34
63 kgGaledo
35
58 kgAbdurrahman
39
56 kgNovardianto
41
69 kg
2
58 kgHibatulah
3
55 kgCahyadi
5
52 kgMonsalve
8
62 kgChawchiangkwang
10
64 kgBoonratanathanakorn
11
72 kgGoh
12
54 kgFelipe
13
58 kgVolkers
15
67 kgSai-udomsin
18
60 kgNieto
20
58 kgSafarzadeh
23
66 kgMazuki
29
57 kgAzman
31
57 kgLiphongyu
33
61 kgMohd Zariff
34
63 kgGaledo
35
58 kgAbdurrahman
39
56 kgNovardianto
41
69 kg
Weight (KG) →
Result →
72
52
2
41
# | Rider | Weight (KG) |
---|---|---|
2 | WHITEHOUSE Daniel | 58 |
3 | HIBATULAH Jamal | 55 |
5 | CAHYADI Aiman | 52 |
8 | MONSALVE Yonathan | 62 |
10 | CHAWCHIANGKWANG Peerapol | 64 |
11 | BOONRATANATHANAKORN Turakit | 72 |
12 | GOH Choon Huat | 54 |
13 | FELIPE Marcelo | 58 |
15 | VOLKERS Samuel | 67 |
18 | SAI-UDOMSIN Phuchong | 60 |
20 | NIETO Edgar | 58 |
23 | SAFARZADEH Saeid | 66 |
29 | MAZUKI Nur Amirul Fakhruddin | 57 |
31 | AZMAN Muhamad Zawawi | 57 |
33 | LIPHONGYU Navuti | 61 |
34 | MOHD ZARIFF Muhammad Nur Aiman | 63 |
35 | GALEDO Mark John Lexer | 58 |
39 | ABDURRAHMAN Muhammad | 56 |
41 | NOVARDIANTO Jamalidin | 69 |