Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Felipe
4
58 kgNovardianto
5
69 kgRezvani
6
68 kgCarstensen
9
69 kgPhounsavath
12
67 kgHoller
13
58 kgBoonratanathanakorn
14
72 kgDyball
16
63 kgKim
17
68 kgAbdurrahman
19
56 kgOconer
22
59 kgCavanagh
23
72 kgSirironnachai
24
61 kgvan Engelen
26
51 kgLiphongyu
29
61 kgMat Amin
30
54 kgSai-udomsin
33
60 kg
4
58 kgNovardianto
5
69 kgRezvani
6
68 kgCarstensen
9
69 kgPhounsavath
12
67 kgHoller
13
58 kgBoonratanathanakorn
14
72 kgDyball
16
63 kgKim
17
68 kgAbdurrahman
19
56 kgOconer
22
59 kgCavanagh
23
72 kgSirironnachai
24
61 kgvan Engelen
26
51 kgLiphongyu
29
61 kgMat Amin
30
54 kgSai-udomsin
33
60 kg
Weight (KG) →
Result →
72
51
4
33
# | Rider | Weight (KG) |
---|---|---|
4 | FELIPE Marcelo | 58 |
5 | NOVARDIANTO Jamalidin | 69 |
6 | REZVANI Morteza | 68 |
9 | CARSTENSEN Lucas | 69 |
12 | PHOUNSAVATH Ariya | 67 |
13 | HOLLER Nikodemus | 58 |
14 | BOONRATANATHANAKORN Turakit | 72 |
16 | DYBALL Benjamin | 63 |
17 | KIM Euro | 68 |
19 | ABDURRAHMAN Muhammad | 56 |
22 | OCONER George | 59 |
23 | CAVANAGH Ryan | 72 |
24 | SIRIRONNACHAI Sarawut | 61 |
26 | VAN ENGELEN Adne | 51 |
29 | LIPHONGYU Navuti | 61 |
30 | MAT AMIN Mohd Shahrul | 54 |
33 | SAI-UDOMSIN Phuchong | 60 |