Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 95
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Zanini
1
80 kgRogina
11
70 kgMarin
12
67 kgPozzato
16
73 kgValach
18
75 kgAug
19
83 kgMahorič
29
68 kgMiholjević
30
68 kgLupeikis
32
80 kgMcCann
36
73 kgGasparre
39
60 kgStrgar
45
62 kgPetrov
49
70 kgMouris
52
91 kgEisel
56
74 kgGazvoda
61
72 kgSinkewitz
62
63 kgCancellara
68
80 kgZamana
71
74 kgBonča
76
63 kgKohut
81
65 kgMugerli
94
68 kgKvasina
101
72 kgKrupa
102
74 kg
1
80 kgRogina
11
70 kgMarin
12
67 kgPozzato
16
73 kgValach
18
75 kgAug
19
83 kgMahorič
29
68 kgMiholjević
30
68 kgLupeikis
32
80 kgMcCann
36
73 kgGasparre
39
60 kgStrgar
45
62 kgPetrov
49
70 kgMouris
52
91 kgEisel
56
74 kgGazvoda
61
72 kgSinkewitz
62
63 kgCancellara
68
80 kgZamana
71
74 kgBonča
76
63 kgKohut
81
65 kgMugerli
94
68 kgKvasina
101
72 kgKrupa
102
74 kg
Weight (KG) →
Result →
91
60
1
102
# | Rider | Weight (KG) |
---|---|---|
1 | ZANINI Stefano | 80 |
11 | ROGINA Radoslav | 70 |
12 | MARIN Matej | 67 |
16 | POZZATO Filippo | 73 |
18 | VALACH Ján | 75 |
19 | AUG Andrus | 83 |
29 | MAHORIČ Mitja | 68 |
30 | MIHOLJEVIĆ Vladimir | 68 |
32 | LUPEIKIS Remigius | 80 |
36 | MCCANN David | 73 |
39 | GASPARRE Graziano | 60 |
45 | STRGAR Matic | 62 |
49 | PETROV Evgeni | 70 |
52 | MOURIS Jens | 91 |
56 | EISEL Bernhard | 74 |
61 | GAZVODA Gregor | 72 |
62 | SINKEWITZ Patrik | 63 |
68 | CANCELLARA Fabian | 80 |
71 | ZAMANA Cezary | 74 |
76 | BONČA Valter | 63 |
81 | KOHUT Sławomir | 65 |
94 | MUGERLI Matej | 68 |
101 | KVASINA Matija | 72 |
102 | KRUPA Dawid | 74 |