Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 57
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Miholjević
3
68 kgKohut
5
65 kgSinkewitz
6
63 kgPetrov
10
70 kgMahorič
11
68 kgRogina
12
70 kgKvasina
16
72 kgBonča
19
63 kgCancellara
28
80 kgMcCann
29
73 kgLupeikis
33
80 kgZamana
36
74 kgValach
38
75 kgZanini
43
80 kgKrupa
49
74 kgPozzato
51
73 kgGazvoda
52
72 kgEisel
53
74 kgMugerli
58
68 kgStrgar
59
62 kgAug
63
83 kgGasparre
65
60 kgMarin
83
67 kgMouris
100
91 kg
3
68 kgKohut
5
65 kgSinkewitz
6
63 kgPetrov
10
70 kgMahorič
11
68 kgRogina
12
70 kgKvasina
16
72 kgBonča
19
63 kgCancellara
28
80 kgMcCann
29
73 kgLupeikis
33
80 kgZamana
36
74 kgValach
38
75 kgZanini
43
80 kgKrupa
49
74 kgPozzato
51
73 kgGazvoda
52
72 kgEisel
53
74 kgMugerli
58
68 kgStrgar
59
62 kgAug
63
83 kgGasparre
65
60 kgMarin
83
67 kgMouris
100
91 kg
Weight (KG) →
Result →
91
60
3
100
# | Rider | Weight (KG) |
---|---|---|
3 | MIHOLJEVIĆ Vladimir | 68 |
5 | KOHUT Sławomir | 65 |
6 | SINKEWITZ Patrik | 63 |
10 | PETROV Evgeni | 70 |
11 | MAHORIČ Mitja | 68 |
12 | ROGINA Radoslav | 70 |
16 | KVASINA Matija | 72 |
19 | BONČA Valter | 63 |
28 | CANCELLARA Fabian | 80 |
29 | MCCANN David | 73 |
33 | LUPEIKIS Remigius | 80 |
36 | ZAMANA Cezary | 74 |
38 | VALACH Ján | 75 |
43 | ZANINI Stefano | 80 |
49 | KRUPA Dawid | 74 |
51 | POZZATO Filippo | 73 |
52 | GAZVODA Gregor | 72 |
53 | EISEL Bernhard | 74 |
58 | MUGERLI Matej | 68 |
59 | STRGAR Matic | 62 |
63 | AUG Andrus | 83 |
65 | GASPARRE Graziano | 60 |
83 | MARIN Matej | 67 |
100 | MOURIS Jens | 91 |