Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 74
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Miholjević
2
68 kgKohut
3
65 kgRogina
17
70 kgBonča
18
63 kgGasparre
19
60 kgSinkewitz
20
63 kgPetrov
21
70 kgPozzato
22
73 kgMahorič
24
68 kgKvasina
29
72 kgMugerli
32
68 kgLupeikis
37
80 kgCancellara
42
80 kgEisel
49
74 kgMcCann
51
73 kgValach
59
75 kgKrupa
63
74 kgZamana
69
74 kgStrgar
82
62 kgMarin
84
67 kgMouris
87
91 kgGazvoda
90
72 kg
2
68 kgKohut
3
65 kgRogina
17
70 kgBonča
18
63 kgGasparre
19
60 kgSinkewitz
20
63 kgPetrov
21
70 kgPozzato
22
73 kgMahorič
24
68 kgKvasina
29
72 kgMugerli
32
68 kgLupeikis
37
80 kgCancellara
42
80 kgEisel
49
74 kgMcCann
51
73 kgValach
59
75 kgKrupa
63
74 kgZamana
69
74 kgStrgar
82
62 kgMarin
84
67 kgMouris
87
91 kgGazvoda
90
72 kg
Weight (KG) →
Result →
91
60
2
90
# | Rider | Weight (KG) |
---|---|---|
2 | MIHOLJEVIĆ Vladimir | 68 |
3 | KOHUT Sławomir | 65 |
17 | ROGINA Radoslav | 70 |
18 | BONČA Valter | 63 |
19 | GASPARRE Graziano | 60 |
20 | SINKEWITZ Patrik | 63 |
21 | PETROV Evgeni | 70 |
22 | POZZATO Filippo | 73 |
24 | MAHORIČ Mitja | 68 |
29 | KVASINA Matija | 72 |
32 | MUGERLI Matej | 68 |
37 | LUPEIKIS Remigius | 80 |
42 | CANCELLARA Fabian | 80 |
49 | EISEL Bernhard | 74 |
51 | MCCANN David | 73 |
59 | VALACH Ján | 75 |
63 | KRUPA Dawid | 74 |
69 | ZAMANA Cezary | 74 |
82 | STRGAR Matic | 62 |
84 | MARIN Matej | 67 |
87 | MOURIS Jens | 91 |
90 | GAZVODA Gregor | 72 |