Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 52
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Miholjević
5
68 kgRogina
6
70 kgPetrov
7
70 kgMahorič
8
68 kgKohut
9
65 kgGasparre
14
60 kgKvasina
20
72 kgValach
21
75 kgSinkewitz
25
63 kgBonča
30
63 kgMcCann
33
73 kgZamana
36
74 kgLupeikis
37
80 kgEisel
38
74 kgKrupa
40
74 kgMugerli
43
68 kgGazvoda
47
72 kgStrgar
48
62 kgCancellara
68
80 kgPozzato
70
73 kgMarin
75
67 kg
5
68 kgRogina
6
70 kgPetrov
7
70 kgMahorič
8
68 kgKohut
9
65 kgGasparre
14
60 kgKvasina
20
72 kgValach
21
75 kgSinkewitz
25
63 kgBonča
30
63 kgMcCann
33
73 kgZamana
36
74 kgLupeikis
37
80 kgEisel
38
74 kgKrupa
40
74 kgMugerli
43
68 kgGazvoda
47
72 kgStrgar
48
62 kgCancellara
68
80 kgPozzato
70
73 kgMarin
75
67 kg
Weight (KG) →
Result →
80
60
5
75
# | Rider | Weight (KG) |
---|---|---|
5 | MIHOLJEVIĆ Vladimir | 68 |
6 | ROGINA Radoslav | 70 |
7 | PETROV Evgeni | 70 |
8 | MAHORIČ Mitja | 68 |
9 | KOHUT Sławomir | 65 |
14 | GASPARRE Graziano | 60 |
20 | KVASINA Matija | 72 |
21 | VALACH Ján | 75 |
25 | SINKEWITZ Patrik | 63 |
30 | BONČA Valter | 63 |
33 | MCCANN David | 73 |
36 | ZAMANA Cezary | 74 |
37 | LUPEIKIS Remigius | 80 |
38 | EISEL Bernhard | 74 |
40 | KRUPA Dawid | 74 |
43 | MUGERLI Matej | 68 |
47 | GAZVODA Gregor | 72 |
48 | STRGAR Matic | 62 |
68 | CANCELLARA Fabian | 80 |
70 | POZZATO Filippo | 73 |
75 | MARIN Matej | 67 |