Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Lupeikis
1
80 kgGasparre
5
60 kgEisel
12
74 kgStrgar
15
62 kgRogina
16
70 kgMahorič
19
68 kgKrupa
21
74 kgBonča
23
63 kgKohut
27
65 kgGazvoda
35
72 kgPozzato
36
73 kgSinkewitz
42
63 kgMiholjević
44
68 kgPetrov
45
70 kgValach
46
75 kgMugerli
48
68 kgMcCann
54
73 kgMarin
57
67 kgKvasina
59
72 kg
1
80 kgGasparre
5
60 kgEisel
12
74 kgStrgar
15
62 kgRogina
16
70 kgMahorič
19
68 kgKrupa
21
74 kgBonča
23
63 kgKohut
27
65 kgGazvoda
35
72 kgPozzato
36
73 kgSinkewitz
42
63 kgMiholjević
44
68 kgPetrov
45
70 kgValach
46
75 kgMugerli
48
68 kgMcCann
54
73 kgMarin
57
67 kgKvasina
59
72 kg
Weight (KG) →
Result →
80
60
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | LUPEIKIS Remigius | 80 |
5 | GASPARRE Graziano | 60 |
12 | EISEL Bernhard | 74 |
15 | STRGAR Matic | 62 |
16 | ROGINA Radoslav | 70 |
19 | MAHORIČ Mitja | 68 |
21 | KRUPA Dawid | 74 |
23 | BONČA Valter | 63 |
27 | KOHUT Sławomir | 65 |
35 | GAZVODA Gregor | 72 |
36 | POZZATO Filippo | 73 |
42 | SINKEWITZ Patrik | 63 |
44 | MIHOLJEVIĆ Vladimir | 68 |
45 | PETROV Evgeni | 70 |
46 | VALACH Ján | 75 |
48 | MUGERLI Matej | 68 |
54 | MCCANN David | 73 |
57 | MARIN Matej | 67 |
59 | KVASINA Matija | 72 |