Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 22
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Strgar
3
62 kgRiška
11
73 kgBrajkovič
12
60 kgMuravyev
23
75 kgVansummeren
24
79 kgVan den Broeck
30
69 kgSiedler
31
75 kgMahorič
33
68 kgRogina
36
70 kgGolčer
38
66.5 kgNiemiec
39
62 kgGazvoda
45
72 kgClement
54
66 kgCurvers
67
73 kgCarlström
72
70 kgKocjan
82
72 kgHoogerland
87
65 kgVan Hecke
89
69 kg
3
62 kgRiška
11
73 kgBrajkovič
12
60 kgMuravyev
23
75 kgVansummeren
24
79 kgVan den Broeck
30
69 kgSiedler
31
75 kgMahorič
33
68 kgRogina
36
70 kgGolčer
38
66.5 kgNiemiec
39
62 kgGazvoda
45
72 kgClement
54
66 kgCurvers
67
73 kgCarlström
72
70 kgKocjan
82
72 kgHoogerland
87
65 kgVan Hecke
89
69 kg
Weight (KG) →
Result →
79
60
3
89
# | Rider | Weight (KG) |
---|---|---|
3 | STRGAR Matic | 62 |
11 | RIŠKA Martin | 73 |
12 | BRAJKOVIČ Janez | 60 |
23 | MURAVYEV Dmitriy | 75 |
24 | VANSUMMEREN Johan | 79 |
30 | VAN DEN BROECK Jurgen | 69 |
31 | SIEDLER Sebastian | 75 |
33 | MAHORIČ Mitja | 68 |
36 | ROGINA Radoslav | 70 |
38 | GOLČER Jure | 66.5 |
39 | NIEMIEC Przemysław | 62 |
45 | GAZVODA Gregor | 72 |
54 | CLEMENT Stef | 66 |
67 | CURVERS Roy | 73 |
72 | CARLSTRÖM Kjell | 70 |
82 | KOCJAN Jure | 72 |
87 | HOOGERLAND Johnny | 65 |
89 | VAN HECKE Preben | 69 |